Apache Kafka源码分析 - KafkaApis
kafka apis反映出kafka broker server可以提供哪些服务,
broker server主要和producer,consumer,controller有交互,搞清这些api就清楚了broker server的所有行为
handleOffsetRequest
提供对offset的查询的需求,比如查询earliest,latest offset是什么,或before某个时间戳的offset是什么
try { // ensure leader exists // 确定是否是leader replica,因为只有leader可以响应offset请求 // 如果不是会抛异常 val localReplica = if(!offsetRequest.isFromDebuggingClient) replicaManager.getLeaderReplicaIfLocal(topicAndPartition.topic, topicAndPartition.partition) else replicaManager.getReplicaOrException(topicAndPartition.topic, topicAndPartition.partition) val offsets = { val allOffsets = fetchOffsets(replicaManager.logManager, //获取offsets列表 topicAndPartition, partitionOffsetRequestInfo.time, partitionOffsetRequestInfo.maxNumOffsets) if (!offsetRequest.isFromOrdinaryClient) { allOffsets } else { val hw = localReplica.highWatermark.messageOffset if (allOffsets.exists(_ > hw)) //过滤掉hw以后的offsets,因为那些都不是应该用户可见的 hw +: allOffsets.dropWhile(_ > hw) else allOffsets } } (topicAndPartition, PartitionOffsetsResponse(ErrorMapping.NoError, offsets)) } catch { // NOTE: UnknownTopicOrPartitionException and NotLeaderForPartitionException are special cased since these error messages // are typically transient and there is no value in logging the entire stack trace for the same case utpe: UnknownTopicOrPartitionException => warn("Offset request with correlation id %d from client %s on partition %s failed due to %s".format( offsetRequest.correlationId, offsetRequest.clientId, topicAndPartition, utpe.getMessage)) (topicAndPartition, PartitionOffsetsResponse(ErrorMapping.codeFor(utpe.getClass.asInstanceOf[Class[Throwable]]), Nil) ) case nle: NotLeaderForPartitionException => warn("Offset request with correlation id %d from client %s on partition %s failed due to %s".format( offsetRequest.correlationId, offsetRequest.clientId, topicAndPartition,nle.getMessage)) (topicAndPartition, PartitionOffsetsResponse(ErrorMapping.codeFor(nle.getClass.asInstanceOf[Class[Throwable]]), Nil) ) case e: Throwable => warn("Error while responding to offset request", e) (topicAndPartition, PartitionOffsetsResponse(ErrorMapping.codeFor(e.getClass.asInstanceOf[Class[Throwable]]), Nil) ) }
可以看到,当没有找到topic->partition, 或partition leader,或其他异常的时候,就会导致返回offsets为nil
这样在客户端,经常通过获取latestOffset来算spoutLag,会出现负值的情况
然后,fetchOffset调用fetchOffsetsBefore,来完成offset的获取,
def fetchOffsetsBefore(log: Log, timestamp: Long, maxNumOffsets: Int): Seq[Long] = { val segsArray = log.logSegments.toArray //取出所有segments var offsetTimeArray: Array[(Long, Long)] = null if(segsArray.last.size > 0) //看最新的segment,即真正被写入的,是否有数据(Segment.size取出segment中log的bytes) offsetTimeArray = new Array[(Long, Long)](segsArray.length + 1) else offsetTimeArray = new Array[(Long, Long)](segsArray.length) for(i <- 0 until segsArray.length) offsetTimeArray(i) = (segsArray(i).baseOffset, segsArray(i).lastModified) //对每个segment, 生成(baseOffset,最后更新的时间) if(segsArray.last.size > 0) offsetTimeArray(segsArray.length) = (log.logEndOffset, SystemTime.milliseconds) //对于最新的segment逻辑不同,这里取的是log.logEndOffset,有点tricky,因为只有取latest offset时才会取到最后这个 var startIndex = -1 timestamp match { case OffsetRequest.LatestTime => startIndex = offsetTimeArray.length - 1 //Latest,取的其实是log.logEndOffset case OffsetRequest.EarliestTime => startIndex = 0 //earlist, 取的是第一个segment的baseOffset case _ => //对某一个时间,去offset var isFound = false debug("Offset time array = " + offsetTimeArray.foreach(o => "%d, %d".format(o._1, o._2))) startIndex = offsetTimeArray.length - 1 while (startIndex >= 0 && !isFound) { //从最后一个segment开始,向前遍历 if (offsetTimeArray(startIndex)._2 <= timestamp) //找到小于等于timestamp的segment isFound = true else startIndex -=1 } } val retSize = maxNumOffsets.min(startIndex + 1) //选择返回几个offset val ret = new Array[Long](retSize) for(j <- 0 until retSize) { ret(j) = offsetTimeArray(startIndex)._1 //返回当前segment,往前的所有segment的baseoffset startIndex -= 1 } // ensure that the returned seq is in descending order of offsets ret.toSeq.sortBy(- _) }
handleProducerOrOffsetCommitRequest
这个用于处理Producer的请求,其实就是写数据
名字有些tricky,和offsetCommit有什么关系,因为对于kafka的highlevel consumer,consumeroffset是被写入kafka topic的,所以offsetCommitRequest其实就是一种特殊的producer request
你看他实际也是,用producerRequestFromOffsetCommit,将它转换成了producer request
主要调用appendToLocalLog,核心逻辑
val partitionOpt = replicaManager.getPartition(topicAndPartition.topic, topicAndPartition.partition) //取到partition,如果没有找到,抛异常 val info = partitionOpt match { case Some(partition) => partition.appendMessagesToLeader(messages.asInstanceOf[ByteBufferMessageSet],producerRequest.requiredAcks) //将数据写入 case None => throw new UnknownTopicOrPartitionException("Partition %s doesn't exist on %d" .format(topicAndPartition, brokerId)) }
Partition.appendMessagesToLeader
def appendMessagesToLeader(messages: ByteBufferMessageSet, requiredAcks: Int=0) = { inReadLock(leaderIsrUpdateLock) { val leaderReplicaOpt = leaderReplicaIfLocal() //是否是leader replica leaderReplicaOpt match { case Some(leaderReplica) => val log = leaderReplica.log.get //取得replica.log val minIsr = log.config.minInSyncReplicas //配置的最小isr的size val inSyncSize = inSyncReplicas.size //当前isr真实的size // Avoid writing to leader if there are not enough insync replicas to make it safe if (inSyncSize < minIsr && requiredAcks == -1) { throw new NotEnoughReplicasException("Number of insync replicas for partition [%s,%d] is [%d], below required minimum [%d]" .format(topic,partitionId,minIsr,inSyncSize)) } val info = log.append(messages, assignOffsets = true) //将message append到log // 当有新数据产生了,需要去触发delayedFetchRequest,consumer的fetch request当达到log end offset的时候是会block的,所以这里需要unblock // probably unblock some follower fetch requests since log end offset has been updated replicaManager.unblockDelayedFetchRequests(new TopicAndPartition(this.topic, this.partitionId)) // we may need to increment high watermark since ISR could be down to 1 maybeIncrementLeaderHW(leaderReplica) //增加HW info case None => //如果找不到leader,往往是因为发生了迁移 throw new NotLeaderForPartitionException("Leader not local for partition [%s,%d] on broker %d" .format(topic, partitionId, localBrokerId)) } } }
对于producer的写策略,取决于配置的acker机制,
acks = 0,那没有failover处理的,发就发了
acks = 1,当写leader replica成功后就返回,其他的replica都是通过fetcher去同步的,所以kafka是异步写
不过有数据丢失的风险,如果leader的数据没有来得及同步,leader挂了,那么会丢失数据
acks = –1, 要等待所有的replicas都成功后,才能返回
所以这里需要产生DelayedProducerRequest,这个request只有在所有的follower都fetch成功后才能reponse
所以DelayedProducerRequest会在fetch request中被触发unblock
if(produceRequest.requiredAcks == 0) { //acks == 0,即不需要ack,没啥需要特别做的 } else if (produceRequest.requiredAcks == 1 || //acks == 1,即需要立即返回response produceRequest.numPartitions <= 0 || //没有要求取数据,因为request里面的partition数为0 numPartitionsInError == produceRequest.numPartitions) { //所有的partition都取失败了 //这几种情况都需要立即返回 requestChannel.sendResponse(new RequestChannel.Response(request, new BoundedByteBufferSend(response))) } else { //这个地方没加注释,应该是ack == -1的情况 // create a list of (topic, partition) pairs to use as keys for this delayed request val producerRequestKeys = produceRequest.data.keys.toSeq val statuses = localProduceResults.map(r => r.key -> DelayedProduceResponseStatus(r.end + 1, ProducerResponseStatus(r.errorCode, r.start))).toMap val delayedRequest = new DelayedProduce( producerRequestKeys, request, produceRequest.ackTimeoutMs.toLong, produceRequest, statuses, offsetCommitRequestOpt) // add the produce request for watch if it's not satisfied, otherwise send the response back val satisfiedByMe = producerRequestPurgatory.checkAndMaybeWatch(delayedRequest) if (satisfiedByMe) producerRequestPurgatory.respond(delayedRequest) }
handleFetchRequest
响应读数据的请求,来自consumer或follower fetcher
def handleFetchRequest(request: RequestChannel.Request) { val fetchRequest = request.requestObj.asInstanceOf[FetchRequest] val dataRead = replicaManager.readMessageSets(fetchRequest) //从replicaManager读出数据 // if the fetch request comes from the follower, // update its corresponding log end offset if(fetchRequest.isFromFollower) //如果是follower的fetch request,更新follower的leo,还可能需要更新ISR recordFollowerLogEndOffsets(fetchRequest.replicaId, dataRead.mapValues(_.offset)) // check if this fetch request can be satisfied right away val bytesReadable = dataRead.values.map(_.data.messages.sizeInBytes).sum val errorReadingData = dataRead.values.foldLeft(false)((errorIncurred, dataAndOffset) => errorIncurred || (dataAndOffset.data.error != ErrorMapping.NoError)) //fetch request是可以delay的,但满足如下要求时是需要立刻返回 // send the data immediately if 1) fetch request does not want to wait // 2) fetch request does not require any data // 3) has enough data to respond // 4) some error happens while reading data if(fetchRequest.maxWait <= 0 || //不想等 fetchRequest.numPartitions <= 0 || //没有请求数据 bytesReadable >= fetchRequest.minBytes || //读到的数据已足够 errorReadingData) { //有异常 debug("Returning fetch response %s for fetch request with correlation id %d to client %s" .format(dataRead.values.map(_.data.error).mkString(","), fetchRequest.correlationId, fetchRequest.clientId)) val response = new FetchResponse(fetchRequest.correlationId, dataRead.mapValues(_.data)) requestChannel.sendResponse(new RequestChannel.Response(request, new FetchResponseSend(response))) } else { //否则产生delay fetcher request,比如没新数据的时候,后续有数据时会unblock这些request debug("Putting fetch request with correlation id %d from client %s into purgatory".format(fetchRequest.correlationId, fetchRequest.clientId)) // create a list of (topic, partition) pairs to use as keys for this delayed request val delayedFetchKeys = fetchRequest.requestInfo.keys.toSeq val delayedFetch = new DelayedFetch(delayedFetchKeys, request, fetchRequest.maxWait, fetchRequest, dataRead.mapValues(_.offset)) // add the fetch request for watch if it's not satisfied, otherwise send the response back val satisfiedByMe = fetchRequestPurgatory.checkAndMaybeWatch(delayedFetch) if (satisfiedByMe) fetchRequestPurgatory.respond(delayedFetch) } }
readMessageSets其实就是对每个topicAndPartititon调用readMessageSet
private def readMessageSet(topic: String, partition: Int, offset: Long, maxSize: Int, fromReplicaId: Int): (FetchDataInfo, Long) = { // check if the current broker is the leader for the partitions val localReplica = if(fromReplicaId == Request.DebuggingConsumerId) getReplicaOrException(topic, partition) else getLeaderReplicaIfLocal(topic, partition) //判断是否是leader,非leader也不能响应fetch请求 trace("Fetching log segment for topic, partition, offset, size = " + (topic, partition, offset, maxSize)) //我的理解,fromReplicaId只有从follower来的fetch请求才会有 val maxOffsetOpt = if (Request.isValidBrokerId(fromReplicaId)) None //从follower来的fetch请求,不需要设最大的offset,有多少读多少好了 else //对于普通的fetch请求,不能读超出hw offset Some(localReplica.highWatermark.messageOffset) val fetchInfo = localReplica.log match { case Some(log) => log.read(offset, maxSize, maxOffsetOpt) case None => error("Leader for partition [%s,%d] does not have a local log".format(topic, partition)) FetchDataInfo(LogOffsetMetadata.UnknownOffsetMetadata, MessageSet.Empty) } (fetchInfo, localReplica.highWatermark.messageOffset) }
如果是follower fetch request,需要做recordFollowerLogEndOffsets更新follower的leo,
private def recordFollowerLogEndOffsets(replicaId: Int, offsets: Map[TopicAndPartition, LogOffsetMetadata]) { debug("Record follower log end offsets: %s ".format(offsets)) offsets.foreach { case (topicAndPartition, offset) => replicaManager.updateReplicaLEOAndPartitionHW(topicAndPartition.topic, //更新LEO和HW topicAndPartition.partition, replicaId, offset) //当一次follower fetch成功后,需要check之前的delayedProduceRequest是否可以response //因为ack=-1时,需要所有的follower都fetch成功后才能response // for producer requests with ack = -1, we need to check // if they can be unblocked after some follower's log end offsets have moved replicaManager.unblockDelayedProduceRequests(topicAndPartition) } }
最终调用到ReplicaManager.updateReplicaLEOAndPartitionHW,并修正改partition的ISR
def updateReplicaLEOAndPartitionHW(topic: String, partitionId: Int, replicaId: Int, offset: LogOffsetMetadata) = { getPartition(topic, partitionId) match { case Some(partition) => partition.getReplica(replicaId) match { case Some(replica) => replica.logEndOffset = offset //将follower的replica的leo设为当前取得的offset // check if we need to update HW and expand Isr partition.updateLeaderHWAndMaybeExpandIsr(replicaId) //更新ISR debug("Recorded follower %d position %d for partition [%s,%d].".format(replicaId, offset.messageOffset, topic, partitionId)) case None => throw new NotAssignedReplicaException(("Leader %d failed to record follower %d's position %d since the replica" + " is not recognized to be one of the assigned replicas %s for partition [%s,%d]").format(localBrokerId, replicaId, offset.messageOffset, partition.assignedReplicas().map(_.brokerId).mkString(","), topic, partitionId)) } case None => warn("While recording the follower position, the partition [%s,%d] hasn't been created, skip updating leader HW".format(topic, partitionId)) } }
最终调到partition.updateLeaderHWAndMaybeExpandIsr来更新ISR
def updateLeaderHWAndMaybeExpandIsr(replicaId: Int) { inWriteLock(leaderIsrUpdateLock) { // check if this replica needs to be added to the ISR leaderReplicaIfLocal() match { //只有当前的replica是leader,才能更新ISR case Some(leaderReplica) => val replica = getReplica(replicaId).get val leaderHW = leaderReplica.highWatermark // For a replica to get added back to ISR, it has to satisfy 3 conditions- //满足下面3条就需要加到ISR中 // 1. It is not already in the ISR // 2. It is part of the assigned replica list. See KAFKA-1097 // 3. It's log end offset >= leader's high watermark if (!inSyncReplicas.contains(replica) && //本身不在ISR中 assignedReplicas.map(_.brokerId).contains(replicaId) && //在AR中 replica.logEndOffset.offsetDiff(leaderHW) >= 0) { //当前的leo大于leader的HW, 说明已经追上了 // expand ISR val newInSyncReplicas = inSyncReplicas + replica //扩展ISR info("Expanding ISR for partition [%s,%d] from %s to %s" .format(topic, partitionId, inSyncReplicas.map(_.brokerId).mkString(","), newInSyncReplicas.map(_.brokerId).mkString(","))) // update ISR in ZK and cache updateIsr(newInSyncReplicas) //把ISR更新到zk replicaManager.isrExpandRate.mark() } maybeIncrementLeaderHW(leaderReplica) 增加hw case None => // nothing to do if no longer leader } } }
maybeIncrementLeaderHW
private def maybeIncrementLeaderHW(leaderReplica: Replica) { val allLogEndOffsets = inSyncReplicas.map(_.logEndOffset) //取出ISR中所有replica的leo列表 val newHighWatermark = allLogEndOffsets.min(new LogOffsetMetadata.OffsetOrdering) //取最小的作为新的hw,这样可以保证只有在所有replica都完成同步的offset,才会设为hw val oldHighWatermark = leaderReplica.highWatermark //当前旧的hw if(oldHighWatermark.precedes(newHighWatermark)) { //判断新的hw一定要大于就的hw leaderReplica.highWatermark = newHighWatermark //更新hw debug("High watermark for partition [%s,%d] updated to %s".format(topic, partitionId, newHighWatermark)) // some delayed requests may be unblocked after HW changed val requestKey = new TopicAndPartition(this.topic, this.partitionId) replicaManager.unblockDelayedFetchRequests(requestKey) //hw变化,触发unblockDelayedFetch很容易理解,有新数据,你之前block的读请求,可以继续读数据 replicaManager.unblockDelayedProduceRequests(requestKey) //也触发unblock DelayedProduce,hw变化表示有数据完成所有replica同步,这样可以reponse produce request } else { debug("Skipping update high watermark since Old hw %s is larger than new hw %s for partition [%s,%d]. All leo's are %s" .format(oldHighWatermark, newHighWatermark, topic, partitionId, allLogEndOffsets.mkString(","))) } }
handleControlledShutdownRequest
响应broker发来的shutdown请求,
def handleControlledShutdownRequest(request: RequestChannel.Request) { val controlledShutdownRequest = request.requestObj.asInstanceOf[ControlledShutdownRequest] val partitionsRemaining = controller.shutdownBroker(controlledShutdownRequest.brokerId) val controlledShutdownResponse = new ControlledShutdownResponse(controlledShutdownRequest.correlationId, ErrorMapping.NoError, partitionsRemaining) requestChannel.sendResponse(new Response(request, new BoundedByteBufferSend(controlledShutdownResponse))) }
单纯的调用,controller.shutdownBroker,这种是优雅的shutdown,会做很多的准备工作
def shutdownBroker(id: Int) : Set[TopicAndPartition] = { if (!isActive()) { //如果当前broker不是controller,抛异常退出 throw new ControllerMovedException("Controller moved to another broker. Aborting controlled shutdown") } controllerContext.brokerShutdownLock synchronized { info("Shutting down broker " + id) inLock(controllerContext.controllerLock) { if (!controllerContext.liveOrShuttingDownBrokerIds.contains(id)) //如果broker不存在,抛异常 throw new BrokerNotAvailableException("Broker id %d does not exist.".format(id)) controllerContext.shuttingDownBrokerIds.add(id) //将broker加入真正shuttingDown的broker list debug("All shutting down brokers: " + controllerContext.shuttingDownBrokerIds.mkString(",")) debug("Live brokers: " + controllerContext.liveBrokerIds.mkString(",")) } val allPartitionsAndReplicationFactorOnBroker: Set[(TopicAndPartition, Int)] = //找出broker上所有的partition和replica inLock(controllerContext.controllerLock) { controllerContext.partitionsOnBroker(id) .map(topicAndPartition => (topicAndPartition, controllerContext.partitionReplicaAssignment(topicAndPartition).size)) } allPartitionsAndReplicationFactorOnBroker.foreach { case(topicAndPartition, replicationFactor) => // Move leadership serially to relinquish lock. inLock(controllerContext.controllerLock) { controllerContext.partitionLeadershipInfo.get(topicAndPartition).foreach { currLeaderIsrAndControllerEpoch => if (replicationFactor > 1) { //如果打开副本机制,=1就是没有副本 if (currLeaderIsrAndControllerEpoch.leaderAndIsr.leader == id) { //如果是leader // If the broker leads the topic partition, transition the leader and update isr. Updates zk and // notifies all affected brokers partitionStateMachine.handleStateChanges(Set(topicAndPartition), OnlinePartition, controlledShutdownPartitionLeaderSelector) //主动做leader重新选举 } else { //如果该broker上的replica不是leader,发送stopReplicas请求 // Stop the replica first. The state change below initiates ZK changes which should take some time // before which the stop replica request should be completed (in most cases) brokerRequestBatch.newBatch() brokerRequestBatch.addStopReplicaRequestForBrokers(Seq(id), topicAndPartition.topic, topicAndPartition.partition, deletePartition = false) brokerRequestBatch.sendRequestsToBrokers(epoch, controllerContext.correlationId.getAndIncrement) // If the broker is a follower, updates the isr in ZK and notifies the current leader replicaStateMachine.handleStateChanges(Set(PartitionAndReplica(topicAndPartition.topic, topicAndPartition.partition, id)), OfflineReplica) } } } } } def replicatedPartitionsBrokerLeads() = inLock(controllerContext.controllerLock) { trace("All leaders = " + controllerContext.partitionLeadershipInfo.mkString(",")) controllerContext.partitionLeadershipInfo.filter { case (topicAndPartition, leaderIsrAndControllerEpoch) => leaderIsrAndControllerEpoch.leaderAndIsr.leader == id && controllerContext.partitionReplicaAssignment(topicAndPartition).size > 1 }.map(_._1) } replicatedPartitionsBrokerLeads().toSet } }
这里做leader重新选举用的是controlledShutdownPartitionLeaderSelector
这个选举策略很简单,
排除了shuttingDownBroker的产生新的ISR,然后选择head作为新的leader
val newIsr = currentLeaderAndIsr.isr.filter(brokerId => !controllerContext.shuttingDownBrokerIds.contains(brokerId))
val newLeaderOpt = newIsr.headOption
handleTopicMetadataRequest,handleUpdateMetadataRequest
就是处理读取和更新MetadataCache的请求,
KafkaApis.metadataCache
首先看看MetaCache是什么?
/** * A cache for the state (e.g., current leader) of each partition. This cache is updated through * UpdateMetadataRequest from the controller. Every broker maintains the same cache, asynchronously. */ private[server] class MetadataCache { private val cache: mutable.Map[String, mutable.Map[Int, PartitionStateInfo]] = new mutable.HashMap[String, mutable.Map[Int, PartitionStateInfo]]() private var aliveBrokers: Map[Int, Broker] = Map() private val partitionMetadataLock = new ReentrantReadWriteLock()
可见cache为,Map[String, mutable.Map[Int, PartitionStateInfo],记录每个topic,每个partition的PartitionStateInfo
case class PartitionStateInfo(val leaderIsrAndControllerEpoch: LeaderIsrAndControllerEpoch, val allReplicas: Set[Int])
包含,leaderIsrAndControllerEpoch,记录leader和isr
allReplicas记录所有的replicas,即AR,注意这里只会记录replica id,replica的具体情况,只会在replicaManager里面记录
这里为每个partition记录leaderIsrAndControllerEpoch,是不是有点浪费
而aliveBrokers,记录所有活的brokers的id和ip:port
所以也比较简单,这个cache在每个brokers之间是会被异步更新的,通过handleUpdateMetadataRequest
handleStopReplicaRequest
停止replica请求,一般是当broker stop或需要删除某replica时被调用
处理很简单,主要就是停止fetcher线程,并删除partition目录
stopReplicas
stopReplica,注意很多情况下是不需要真正删除replica的,比如宕机
handleLeaderAndIsrRequest
处理leaderAndIsr的更新,这个和handleUpdateMetadataRequest的区别是,不光更新cache,需要真正去做replica的leader切换
主要调用,
replicaManager.becomeLeaderOrFollower(leaderAndIsrRequest, offsetManager)
核心逻辑如下,前面那段主要是判断这个request是否有效,根据controllerEpoch和leaderEpoch
def becomeLeaderOrFollower(leaderAndISRRequest: LeaderAndIsrRequest): (collection.Map[(String, Int), Short], Short) = { replicaStateChangeLock synchronized {// 加锁 val responseMap = new collection.mutable.HashMap[(String, Int), Short] if(leaderAndISRRequest.controllerEpoch < controllerEpoch) { // 检查requset epoch (responseMap, ErrorMapping.StaleControllerEpochCode) } else { val controllerId = leaderAndISRRequest.controllerId val correlationId = leaderAndISRRequest.correlationId controllerEpoch = leaderAndISRRequest.controllerEpoch // First check partition's leader epoch // 前面只是检查了request的epoch,但是还要检查其中的每个partitionStateInfo中的leader epoch val partitionState = new HashMap[Partition, PartitionStateInfo]() leaderAndISRRequest.partitionStateInfos.foreach{ case ((topic, partitionId), partitionStateInfo) => val partition = getOrCreatePartition(topic, partitionId, partitionStateInfo.replicationFactor) // get或创建partition,partition只是逻辑存在,所以也是创建partition对象 val partitionLeaderEpoch = partition.getLeaderEpoch() // If the leader epoch is valid record the epoch of the controller that made the leadership decision. // This is useful while updating the isr to maintain the decision maker controller's epoch in the zookeeper path if (partitionLeaderEpoch < partitionStateInfo.leaderIsrAndControllerEpoch.leaderAndIsr.leaderEpoch) { // local的partitionLeaderEpoch要小于request中的leaderEpoch,否则就是过时的request if(partitionStateInfo.allReplicas.contains(config.brokerId)) // 判断该partition是否被assigned给当前的broker partitionState.put(partition, partitionStateInfo) // 只将被分配到当前broker的partition放入partitionState,其中partition是当前的状况,partitionStateInfo是request中最新的状况 else { } } else { // Received invalid LeaderAndIsr request // Otherwise record the error code in response responseMap.put((topic, partitionId), ErrorMapping.StaleLeaderEpochCode) } } //核心逻辑,判断是否为leader或follower,分别调用makeLeaders和makeFollowers val partitionsTobeLeader = partitionState //从partitionState中筛选出以该broker为leader replica的 .filter{ case (partition, partitionStateInfo) => partitionStateInfo.leaderIsrAndControllerEpoch.leaderAndIsr.leader == config.brokerId} val partitionsToBeFollower = (partitionState -- partitionsTobeLeader.keys) if (!partitionsTobeLeader.isEmpty) makeLeaders(controllerId, controllerEpoch, partitionsTobeLeader, leaderAndISRRequest.correlationId, responseMap) if (!partitionsToBeFollower.isEmpty) makeFollowers(controllerId, controllerEpoch, partitionsToBeFollower, leaderAndISRRequest.leaders, leaderAndISRRequest.correlationId, responseMap) // we initialize highwatermark thread after the first leaderisrrequest. This ensures that all the partitions // have been completely populated before starting the checkpointing there by avoiding weird race conditions if (!hwThreadInitialized) { startHighWaterMarksCheckPointThread() // 启动HighWaterMarksCheckPointThread,hw很重要,需要定期存到磁盘,这样failover的时候可以重新load hwThreadInitialized = true } replicaFetcherManager.shutdownIdleFetcherThreads() //关闭idle的fether,如果成为leader,就不需要fetch (responseMap, ErrorMapping.NoError) } } }
replicaManager里面有个allPartitions,记录所有partition的情况,
private val allPartitions = new Pool[(String, Int), Partition]
其中Partition结构中,比较主要的数据是,
private val assignedReplicaMap = new Pool[Int, Replica]
这个记录brokerid和replica的对应关系
def getOrCreatePartition(topic: String, partitionId: Int): Partition = { var partition = allPartitions.get((topic, partitionId)) if (partition == null) { allPartitions.putIfNotExists((topic, partitionId), new Partition(topic, partitionId, time, this)) partition = allPartitions.get((topic, partitionId)) } partition }
所以getOrCreatePartition,只是get当前replicaManager里面保存的该partiiton的情况
replicaManager.makeLeaders
关闭所有成为leader的replica对应的fetcher,然后关键是调用,
// Update the partition information to be the leader partitionState.foreach{ case (partition, partitionStateInfo) => partition.makeLeader(controllerId, partitionStateInfo, correlationId)}
上面提到case (partition, partitionStateInfo)中,partition是replicaManager当前的情况,而partitionStateInfo中间放的是request的新的分配情况,
def makeLeader(controllerId: Int, partitionStateInfo: PartitionStateInfo, correlationId: Int, offsetManager: OffsetManager): Boolean = { inWriteLock(leaderIsrUpdateLock) { val allReplicas = partitionStateInfo.allReplicas val leaderIsrAndControllerEpoch = partitionStateInfo.leaderIsrAndControllerEpoch val leaderAndIsr = leaderIsrAndControllerEpoch.leaderAndIsr // record the epoch of the controller that made the leadership decision. This is useful while updating the isr // to maintain the decision maker controller's epoch in the zookeeper path controllerEpoch = leaderIsrAndControllerEpoch.controllerEpoch // add replicas that are new allReplicas.foreach(replica => getOrCreateReplica(replica)) //request中allReplicas val newInSyncReplicas = leaderAndIsr.isr.map(r => getOrCreateReplica(r)).toSet //request中ISR中的所有replicas // remove assigned replicas that have been removed by the controller // assignedReplicas表示当前partition分配情况,需要根据allReplicas更新,如果replicaid不在allReplicas中,则需要从assignedReplicas中删除 (assignedReplicas().map(_.brokerId) -- allReplicas).foreach(removeReplica(_)) inSyncReplicas = newInSyncReplicas // 用request中的数据来更新当前partition中的 leaderEpoch = leaderAndIsr.leaderEpoch zkVersion = leaderAndIsr.zkVersion leaderReplicaIdOpt = Some(localBrokerId) // construct the high watermark metadata for the new leader replica val newLeaderReplica = getReplica().get newLeaderReplica.convertHWToLocalOffsetMetadata() //对于新建的replica,只有offset,需要从log读取一下metadata // reset log end offset for remote replicas
// 理解这,关键知道leo什么时候被更新的,leo只有当follower成功fetch leader的数据时,才会更新leader.assignedReplicas.getReplica.leo
// 所以这里需要把leo给reset,因为如果有数据,可能是上次该broker称为leader时的遗留数据 assignedReplicas.foreach(r => if (r.brokerId != localBrokerId) r.logEndOffset = LogOffsetMetadata.UnknownOffsetMetadata) // 上面把所有remote replica的leo重置了成UnknownOffsetMetadata(-1),那么在maybeIncrementLeaderHW中会取所有replica中最小的leo,如果除leader外有其他replica,因为刚被重置过,最小leo一定是-1
// -1一定小于当前的hw,所以hw其实不会被increment。只有当isr中只有leader时,那hw会被increment到leader.leo
maybeIncrementLeaderHW(newLeaderReplica) if (topic == OffsetManager.OffsetsTopicName) offsetManager.loadOffsetsFromLog(partitionId) true } }
这里还有个函数getOrCreateReplica,知道两点,
a. 在这里当local replica不存在的时候,会真正的创建replica
b. 所有生成replica都是用这个函数,所以其他的replica list都是assignedReplicaMap中replica的引用,比如inSyncReplicas
def getOrCreateReplica(replicaId: Int = localBrokerId): Replica = { val replicaOpt = getReplica(replicaId)//assignedReplicaMap.get(replicaId)
replicaOpt match { case Some(replica) => replica case None => if (isReplicaLocal(replicaId)) { //如果是local,并且在AR中没有,那么需要创建这个replica val config = LogConfig.fromProps(logManager.defaultConfig.toProps, AdminUtils.fetchTopicConfig(zkClient, topic)) val log = logManager.createLog(TopicAndPartition(topic, partitionId), config) //真正的创建replica文件 val checkpoint = replicaManager.highWatermarkCheckpoints(log.dir.getParentFile.getAbsolutePath) //需要读出hw checkpoint val offsetMap = checkpoint.read if (!offsetMap.contains(TopicAndPartition(topic, partitionId))) warn("No checkpointed highwatermark is found for partition [%s,%d]".format(topic, partitionId)) val offset = offsetMap.getOrElse(TopicAndPartition(topic, partitionId), 0L).min(log.logEndOffset) //读出hw,和loe求min,防止hw大于loe val localReplica = new Replica(replicaId, this, time, offset, Some(log)) addReplicaIfNotExists(localReplica) } else { // val remoteReplica = new Replica(replicaId, this, time) addReplicaIfNotExists(remoteReplica) } getReplica(replicaId).get } }
replicaManager.makeFollowers
var partitionsToMakeFollower: Set[Partition] = Set() //记录leader发生变化的partition //调用partition.makeFollower if (partition.makeFollower(controllerId, partitionStateInfo, correlationId, offsetManager)) // 仅仅当partition的leader发生变化时才返回true,因为如果不变,不需要做任何操作 partitionsToMakeFollower += partition //由于leader已发生变化,需要把旧的fetcher删除 replicaFetcherManager.removeFetcherForPartitions(partitionsToMakeFollower.map(new TopicAndPartition(_))) //由于leader已发生变化,所以之前和旧leader同步的数据可能和新的leader是不一致的,但hw以下的数据,大家都是一致的,所以就把hw以上的数据truncate掉,防止不一致 logManager.truncateTo(partitionsToMakeFollower.map(partition => (new TopicAndPartition(partition), partition.getOrCreateReplica().highWatermark.messageOffset)).toMap) if (isShuttingDown.get()) { //真正shuttingDown,就不要再加fetcher } else { // we do not need to check if the leader exists again since this has been done at the beginning of this process val partitionsToMakeFollowerWithLeaderAndOffset = partitionsToMakeFollower.map(partition => // new TopicAndPartition(partition) -> BrokerAndInitialOffset( leaders.find(_.id == partition.leaderReplicaIdOpt.get).get, partition.getReplica().get.logEndOffset.messageOffset)).toMapreplicaFetcherManager.addFetcherForPartitions(partitionsToMakeFollowerWithLeaderAndOffset) //增加新的fetcher
}
partition.makeFollower
比较简单,只是更新assignedReplicas和ISR
def makeFollower(controllerId: Int, partitionStateInfo: PartitionStateInfo, correlationId: Int, offsetManager: OffsetManager): Boolean = { inWriteLock(leaderIsrUpdateLock) { val allReplicas = partitionStateInfo.allReplicas val leaderIsrAndControllerEpoch = partitionStateInfo.leaderIsrAndControllerEpoch val leaderAndIsr = leaderIsrAndControllerEpoch.leaderAndIsr val newLeaderBrokerId: Int = leaderAndIsr.leader // record the epoch of the controller that made the leadership decision. This is useful while updating the isr // to maintain the decision maker controller's epoch in the zookeeper path controllerEpoch = leaderIsrAndControllerEpoch.controllerEpoch // add replicas that are new allReplicas.foreach(r => getOrCreateReplica(r)) // remove assigned replicas that have been removed by the controller (assignedReplicas().map(_.brokerId) -- allReplicas).foreach(removeReplica(_)) inSyncReplicas = Set.empty[Replica] // 将isr置空,不同于makeLeader leaderEpoch = leaderAndIsr.leaderEpoch zkVersion = leaderAndIsr.zkVersion if (leaderReplicaIdOpt.isDefined && leaderReplicaIdOpt.get == newLeaderBrokerId) { // 判断replica leader是否发生了变化 false } else { leaderReplicaIdOpt = Some(newLeaderBrokerId) // 如果发生变化,则更新leader true } } }