Storm-源码分析- Disruptor在storm中的使用
Disruptor 2.0, (http://ifeve.com/disruptor-2-change/)
Disruptor为了更便于使用, 在2.0做了比较大的调整, 比较突出的是更换了几乎所有的概念名
老版本,
新版本,
从左到右的变化如下,
1. Producer –> Publisher
2. ProducerBarrier被integrate到RingBuffer里面, 叫做PublishPort, 提供publish接口
3. Entry –> Event
4, Cursor封装成Sequence, 其实Sequence就是将cursor+pading封装一下
5. Consumer –> EventProcesser
6. ConsumerBarrier 变为DependencyBarrier, 或SequenceBarrier
并且对于publisher和EventProcesser, 存在ClaimStrategy和WaitStrategy
对于publisher的ClaimStrategy, 由于publisher需要先claim到sequencer才能publish: SingleThreadedClaimStrategy, MultiThreadedClaimStrategy, 应该是对于singlethread不需要使用CAS更为高效
对于EventProcesser的WaitStrategy, 当取不到数据的时候采用什么样的策略进行等待: BlockingWaitStrategy, BusySpinWaitStrategy, SleepingWaitStrategy, YieldingWaitStrategy
Blocking就是同步加锁, BusySpin就是忙等耗CPU, 都比较低效
Yielding就是调用thread.yeild(), 把线程的从可执行状态调整成就绪装, 意思我先息下, 你们忙你们先来, 就是把CPU让给其他的线程, 但是yeild并不保证过多久线程被执行, 如果没有其他线程, 可能会被立即执行
而sleep, 会强制线程休眠指定时间, 然后再重新调度
DisruptorQueue.java
static final Object FLUSH_CACHE = new Object(); //特殊对象, 当consumer取到时, 触发cache queue的flush static final Object INTERRUPT = new Object(); //特殊对象, 当consumer取到时, 触发InterruptedException RingBuffer<MutableObject> _buffer; //Disruptor的主要的数据结构RingBuffer Sequence _consumer; //consumer读取序号 SequenceBarrier _barrier; //用于consumer监听RingBuffer的序号情况 // TODO: consider having a threadlocal cache of this variable to speed up reads? volatile boolean consumerStartedFlag = false; //标志consumer是否start, 由于需要在change后其他线程可以马上知道, 所以使用volatile ConcurrentLinkedQueue<Object> _cache = new ConcurrentLinkedQueue(); //当consumer没有start的时候, cache event的queue
ConcurrentLinkedQueue, 使用CAS而非lock来实现的线程安全队列, 具体参考(http://blog.sina.com.cn/s/blog_5efa3473010129pj.html)
首先声明一组变量, 部分会在构造函数中被初始化
最重要的结构就是RingBuffer, 这是个模板类, 这里从ObjectEventFactory()的实现也可以看出来, 初始化的时候在ringbuffer的每个entry上都创建一个MutableObject对象
MutableObject的实现很简单, 这是封装了object o, 为什么要做这层封装?
为了避免Java GC, 对于RingBuffer一旦初始化好, 上面的所有的MutableObject都不会被释放, 你只是去对object o, set不同的值
_buffer = new RingBuffer<MutableObject>(new ObjectEventFactory(), claim, wait);
public static class ObjectEventFactory implements EventFactory<MutableObject> { @Override public MutableObject newInstance() { return new MutableObject(); } }
public class MutableObject { Object o = null; }
Publish
Publish过程, 可见当前ProducerBarrier已经被集成到RingBuffer里面, 所以直接调用_buffer的接口
首先调用next, claim序号
取出序号上的MutableObject, 并将输入obj set
最后, publish当前序号, 表示consumer可以读取
当consumer没有start时, 会将obj cache在_cache中, 而不会放到ringbuffer中 (我没有想明白why? 为何要使用低效的链表queue来cache, 而不直接放到ringbuffer里面)
public void publish(Object obj, boolean block) throws InsufficientCapacityException { if(consumerStartedFlag) { final long id; if(block) { id = _buffer.next(); } else { id = _buffer.tryNext(1); } final MutableObject m = _buffer.get(id); m.setObject(obj); _buffer.publish(id); } else { _cache.add(obj); if(consumerStartedFlag) flushCache(); } }
Consume
consume的过程, 这里实现的时Batch consume, 即给定Cursor, 会一直consume到该cursor为止
_consumer代表当前已经被consume的序号, 所以从_consumer.get() + 1开始读
取出MutableObject中的o, 并将MutableObject 清空
根据o的情况, 3种情况,
1. 如果是FLUSH_CACHE对象, 将cache中的event读出调用handler.onEvent
2. 如果是INTERRUPT对象, 触发InterruptedException
3. 正常情况, 直接调用handler.onEvent处理该o, curr == cursor判断表示batch是否结束, 当读到cursor的时候结束
最终将_consumer置为cursor, 表示已经读到cursor位置
private void consumeBatchToCursor(long cursor, EventHandler<Object> handler) { for(long curr = _consumer.get() + 1; curr <= cursor; curr++) { try { MutableObject mo = _buffer.get(curr); Object o = mo.o; mo.setObject(null); if(o==FLUSH_CACHE) { Object c = null; while(true) { c = _cache.poll(); if(c==null) break; else handler.onEvent(c, curr, true); } } else if(o==INTERRUPT) { throw new InterruptedException("Disruptor processing interrupted"); } else { handler.onEvent(o, curr, curr == cursor); } } catch (Exception e) { throw new RuntimeException(e); } } //TODO: only set this if the consumer cursor has changed? _consumer.set(cursor); }
backtype.storm.disruptor.clj
创建DisruptorQueue, 选用MultiThreadedClaimStrategy和BlockingWaitStrategy
(defnk disruptor-queue [buffer-size :claim-strategy :multi-threaded :wait-strategy :block] (DisruptorQueue. ((CLAIM-STRATEGY claim-strategy) buffer-size) (mk-wait-strategy wait-strategy) ))
并封装一系列Java接口
最重要的工作是, 启动consume-loop
这里ret是closeover了一个间隔为0的不停执行(consume-batch-when-available queue handler) 的线程, 而consumeBatchWhenAvailable的实现就是不停的sleep并调用consumeBatchToCursor
并且通过consumer-started!通知其他线程consumer已经start
(defnk consume-loop* [^DisruptorQueue queue handler :kill-fn (fn [error] (halt-process! 1 "Async loop died!"))
:thread-name nil]
(let [ret (async-loop
(fn []
(consume-batch-when-available queue handler)
0 )
:kill-fn kill-fn
:thread-name thread-name
)]
(consumer-started! queue)
ret
))
(defmacro consume-loop [queue & handler-args]
`(let [handler# (handler ~@handler-args)]
(consume-loop* ~queue handler#)
))
看看async-loop实现什么功能?
返回reify实现的record, 其中closeover了thread
这个thread主要就是死循环的执行传入的afn, 并且以afn的返回值作为执行间隔主要功能, 异步的loop, 开启新的线程来执行loop, 而不是在当前主线程, 并且提供了sleep设置
;; afn returns amount of time to sleep (defnk async-loop [afn :daemon false :kill-fn (fn [error] (halt-process! 1 "Async loop died!")) :priority Thread/NORM_PRIORITY :factory? false :start true :thread-name nil] (let [thread (Thread. (fn [] (try-cause (let [afn (if factory? (afn) afn)] (loop [] (let [sleep-time (afn)] (when-not (nil? sleep-time) (sleep-secs sleep-time) (recur)) ))) (catch InterruptedException e (log-message "Async loop interrupted!") ) (catch Throwable t (log-error t "Async loop died!") (kill-fn t) )) ))] (.setDaemon thread daemon) (.setPriority thread priority) (when thread-name (.setName thread (str (.getName thread) "-" thread-name))) (when start (.start thread)) ;; should return object that supports stop, interrupt, join, and waiting? (reify SmartThread (start [this] (.start thread)) (join [this] (.join thread)) (interrupt [this] (.interrupt thread)) (sleeping? [this] (Time/isThreadWaiting thread) )) ))
Storm在Worker中executors线程间通信, 如何使用Disruptor的?