函数 (四) 迭代器和生成器
一 迭代器
一 迭代的概念
#迭代器即迭代的工具,那什么是迭代呢?
#迭代是一个重复的过程,每次重复即一次迭代,并且每次迭代的结果都是下一次迭代的初始值 while True: #只是单纯地重复,因而不是迭代 print('===>') l=[1,2,3] count=0 while count < len(l): #迭代 print(l[count]) count+=1
二 为何要有迭代器?什么是可迭代对象?什么是迭代器对象?
1 #1、为何要有迭代器? 2 对于序列类型:字符串、列表、元组,我们可以使用索引的方式迭代取出其包含的元素。但对于字典、集合、文件等类型是没有索引的,若还想取出其内部包含的元素,则必须找出一种不依赖于索引的迭代方式,这就是迭代器 3 4 #2、什么是可迭代对象? 5 可迭代对象指的是内置有__iter__方法的对象,即obj.__iter__,如下 6 'hello'.__iter__ 7 (1,2,3).__iter__ 8 [1,2,3].__iter__ 9 {'a':1}.__iter__ 10 {'a','b'}.__iter__ 11 open('a.txt').__iter__ 12 13 #3、什么是迭代器对象? 14 可迭代对象执行obj.__iter__()得到的结果就是迭代器对象 15 而迭代器对象指的是即内置有__iter__又内置有__next__方法的对象 16 17 文件类型是迭代器对象 18 open('a.txt').__iter__() 19 open('a.txt').__next__() 20 21 22 #4、注意: 23 迭代器对象一定是可迭代对象,而可迭代对象不一定是迭代器对象
三 迭代器对象的使用
1 dic={'a':1,'b':2,'c':3} 2 iter_dic=dic.__iter__() #得到迭代器对象,迭代器对象即有__iter__又有__next__,但是:迭代器.__iter__()得到的仍然是迭代器本身 3 iter_dic.__iter__() is iter_dic #True 4 5 print(iter_dic.__next__()) #等同于next(iter_dic) 6 print(iter_dic.__next__()) #等同于next(iter_dic) 7 print(iter_dic.__next__()) #等同于next(iter_dic) 8 # print(iter_dic.__next__()) #抛出异常StopIteration,或者说结束标志 9 10 #有了迭代器,我们就可以不依赖索引迭代取值了 11 iter_dic=dic.__iter__() 12 while 1: 13 try: 14 k=next(iter_dic) 15 print(dic[k]) 16 except StopIteration: 17 break 18 19 #这么写太丑陋了,需要我们自己捕捉异常,控制next,python这么牛逼,能不能帮我解决呢?能,请看for循环
四 for循环
#基于for循环,我们可以完全不再依赖索引去取值了 dic={'a':1,'b':2,'c':3} for k in dic: print(dic[k]) #for循环的工作原理 #1:执行in后对象的dic.__iter__()方法,得到一个迭代器对象iter_dic #2: 执行next(iter_dic),将得到的值赋值给k,然后执行循环体代码 #3: 重复过程2,直到捕捉到异常StopIteration,结束循环
五 迭代器的优缺点
#优点: - 提供一种统一的、不依赖于索引的迭代方式 - 惰性计算,节省内存 #缺点: - 无法获取长度(只有在next完毕才知道到底有几个值) - 一次性的,只能往后走,不能往前退
二 生成器
一 什么是生成器
#只要函数内部包含有yield关键字,那么函数名()的到的结果就是生成器,并且不会执行函数内部代码 def func(): print('====>first') yield 1 print('====>second') yield 2 print('====>third') yield 3 print('====>end') g=func() print(g) #<generator object func at 0x0000000002184360>
二 生成器就是迭代器
g.__iter__ g.__next__ #2、所以生成器就是迭代器,因此可以这么取值 res=next(g) print(res)