#417 Div2 E (树上阶梯博弈)
#417 Div2 E
题意
给出一颗苹果树,设定所有叶子节点的深度全是奇数或偶数,并且包括根在内的所有节点上都有若干个苹果。
两人进行游戏,每回合每个人可以做下列两种操作中的一种:
- 每个人可以吃掉某个叶子节点上的部分苹果。
- 将某个非叶子结点上的部分苹果移向它的孩子。
吃掉树上最后一个苹果的人获胜。
后手可以在游戏开始之前交换两个不同节点的苹果,输出交换后能使得后手胜利的交换总的方案数。
分析
其实就是阶梯博弈裸题。
分两种情况:
- 叶子节点深度为奇数,那么只需要对所有深度为奇数的节点求异或和(Nim博弈),异或和等于 0 时先手必败,无论必败方怎么操作,必胜方都可以通过适当的操作抵消掉必败方的操作。在求方案数的时候,对于异或和为 0 的情况,分别在奇数深度节点和偶数深度节点内进行交换,然后遍历奇数深度的节点,从偶数深度节点内找到值为 xor_sum^odd[i] 的节点。
- 叶子节点深度为偶数,对深度为偶数的节点求异或和,其它同理。
code
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN = 1e5 + 10;
const int N = 1e7 + 5;
int n;
int has[MAXN];
int dep[MAXN];
vector<int> G[MAXN];
int oddxor, evenxor;
ll even, odd;
int evenn[N], oddn[N];
vector<int> oddv, evenv;
int f;
void dfs(int pre, int x, int d) {
dep[x] = d;
if(d & 1) {
odd++;
oddv.push_back(x);
oddn[has[x]]++;
oddxor ^= has[x];
} else {
even++;
evenv.push_back(x);
evenn[has[x]]++;
evenxor ^= has[x];
}
if(!G[x].size() && dep[x] & 1) f = 1;
for(int i = 0; i < G[x].size(); i++) {
int v = G[x][i];
if(v != pre) dfs(x, v, d + 1);
}
}
int main() {
cin >> n;
for(int i = 1; i <= n; i++) {
cin >> has[i];
}
for(int i = 2; i <= n; i++) {
int x;
cin >> x;
G[x].push_back(i);
}
ll ans = 0;
dfs(0, 1, 0);
if(f) {
if(!oddxor) {
ans += (even * even - even) / 2 + (odd * odd - odd) / 2;
}
for(int i = 0; i < oddv.size(); i++) {
if((oddxor ^ has[oddv[i]]) < N) ans += evenn[oddxor ^ has[oddv[i]]];
}
} else {
if(!evenxor) {
ans += (even * even - even) / 2 + (odd * odd - odd) / 2;
}
for(int i = 0; i < evenv.size(); i++) {
if((evenxor ^ has[evenv[i]]) < N) ans += oddn[evenxor ^ has[evenv[i]]];
}
}
cout << ans << endl;
return 0;
}