Unity Shader:Blur
花了一晚上的时间终于看懂Image Effect中的Blur,其实很简单,就是一下子没有理解到。
原理:使用两个一维[1*7]的高斯滤波模板,一个用在x方向,另一个用在y方向。高斯滤波有模糊的效果。
js脚本参数:
Down Sample:OnRenderImage中获取的图像进行降采样,其实就是把要处理的纹理变小。有利于加快shader运行速度。
Blur Size:在使用高斯模板时,相邻像素点的间隔。越大间隔越远,图像越模糊。但过大的值会导致失真。
Blur Iterations:迭代次数,越大模糊效果越好,但消耗越大。
Blur Type:两个不同的shader,后一个是前一个的优化版本,但差别不大。
具体代码分析:
function OnRenderImage (source : RenderTexture, destination : RenderTexture) { if(CheckResources() == false) { Graphics.Blit (source, destination); return; } var widthMod : float = 1.0f / (1.0f * (1<<downsample)); // 降采样系数的倒数,用于调整降采样后,相邻像素的间隔 // blurMaterial.SetVector ("_Parameter", Vector4 (blurSize * widthMod, -blurSize * widthMod, 0.0f, 0.0f)); source.filterMode = FilterMode.Bilinear; var rtW : int = source.width >> downsample; // >> 是除法的优化 var rtH : int = source.height >> downsample; // downsample var rt : RenderTexture = RenderTexture.GetTemporary (rtW, rtH, 0, source.format); rt.filterMode = FilterMode.Bilinear;
// 对应的shader的Pass 0 Graphics.Blit (source, rt, blurMaterial, 0); //首先对图像进行降采样,同时进行简单的模糊 var passOffs = blurType == BlurType.StandardGauss ? 0 : 2; // 选择不同的blurtype,就调用不同的shader pass for(var i : int = 0; i < blurIterations; i++) { var iterationOffs : float = (i*1.0f);
// _Parameter.x 记录的是 相邻像素的间隔,随着迭代次数增大 blurMaterial.SetVector ("_Parameter", Vector4 (blurSize * widthMod + iterationOffs, -blurSize * widthMod - iterationOffs, 0.0f, 0.0f)); // vertical blur 垂直滤波 var rt2 : RenderTexture = RenderTexture.GetTemporary (rtW, rtH, 0, source.format); rt2.filterMode = FilterMode.Bilinear; Graphics.Blit (rt, rt2, blurMaterial, 1 + passOffs); // 对应着shader的pass 1,2 RenderTexture.ReleaseTemporary (rt); rt = rt2; // horizontal blur 水平滤波 rt2 = RenderTexture.GetTemporary (rtW, rtH, 0, source.format); rt2.filterMode = FilterMode.Bilinear; Graphics.Blit (rt, rt2, blurMaterial, 2 + passOffs); // 对应着shader的pass 3,4 RenderTexture.ReleaseTemporary (rt); rt = rt2; } Graphics.Blit (rt, destination); RenderTexture.ReleaseTemporary (rt); }
接着分析shader文件:
先看5个pass,分别是用在上文cs脚本中的Bilt函数中。
SubShader { ZTest Off Cull Off ZWrite Off Blend Off Fog { Mode off } // 0 Pass { CGPROGRAM #pragma vertex vert4Tap #pragma fragment fragDownsample #pragma fragmentoption ARB_precision_hint_fastest ENDCG } // 1 Pass { ZTest Always Cull Off CGPROGRAM #pragma vertex vertBlurVertical #pragma fragment fragBlur8 #pragma fragmentoption ARB_precision_hint_fastest ENDCG } // 2 Pass { ZTest Always Cull Off CGPROGRAM #pragma vertex vertBlurHorizontal #pragma fragment fragBlur8 #pragma fragmentoption ARB_precision_hint_fastest ENDCG } // alternate blur // 3 Pass { ZTest Always Cull Off CGPROGRAM #pragma vertex vertBlurVerticalSGX #pragma fragment fragBlurSGX #pragma fragmentoption ARB_precision_hint_fastest ENDCG } // 4 Pass { ZTest Always Cull Off CGPROGRAM #pragma vertex vertBlurHorizontalSGX #pragma fragment fragBlurSGX #pragma fragmentoption ARB_precision_hint_fastest ENDCG } }
pass 0:在降采样的同时,进行简单地模糊处理。
v2f_tap vert4Tap ( appdata_img v ) { v2f_tap o; o.pos = mul (UNITY_MATRIX_MVP, v.vertex);
// 取像素周围的点 o.uv20 = v.texcoord + _MainTex_TexelSize.xy; o.uv21 = v.texcoord + _MainTex_TexelSize.xy * half2(-0.5h,-0.5h); o.uv22 = v.texcoord + _MainTex_TexelSize.xy * half2(0.5h,-0.5h); o.uv23 = v.texcoord + _MainTex_TexelSize.xy * half2(-0.5h,0.5h); return o; } fixed4 fragDownsample ( v2f_tap i ) : SV_Target { fixed4 color = tex2D (_MainTex, i.uv20); color += tex2D (_MainTex, i.uv21); color += tex2D (_MainTex, i.uv22); color += tex2D (_MainTex, i.uv23); return color / 4; }
接下来的pass 1,2 和pass 3, 4,都是分别在x y两个方向进行高斯滤波。
先看看高斯滤波模板:
static const half4 curve4[7] = { half4(0.0205,0.0205,0.0205,0), half4(0.0855,0.0855,0.0855,0), half4(0.232,0.232,0.232,0), half4(0.324,0.324,0.324,1), half4(0.232,0.232,0.232,0), half4(0.0855,0.0855,0.0855,0), half4(0.0205,0.0205,0.0205,0) };
这是 [1*7]的模板,对中间点像素的左右两边各3个像素,总共7个像素进行加权求和,得到新的像素值。
pass 1,2的只有vert函数不一样,分别是取水平和垂直方向的偏差值。
v2f_withBlurCoords8 vertBlurHorizontal (appdata_img v) { v2f_withBlurCoords8 o; o.pos = mul (UNITY_MATRIX_MVP, v.vertex); o.uv = half4(v.texcoord.xy,1,1); o.offs = _MainTex_TexelSize.xy * half2(1.0, 0.0) * _Parameter.x; // 水平方向的偏差值 return o; } v2f_withBlurCoords8 vertBlurVertical (appdata_img v) { v2f_withBlurCoords8 o; o.pos = mul (UNITY_MATRIX_MVP, v.vertex); o.uv = half4(v.texcoord.xy,1,1); o.offs = _MainTex_TexelSize.xy * half2(0.0, 1.0) * _Parameter.x; // 垂直方向的偏差值 return o; } half4 fragBlur8 ( v2f_withBlurCoords8 i ) : SV_Target { half2 uv = i.uv.xy; half2 netFilterWidth = i.offs; half2 coords = uv - netFilterWidth * 3.0; // 这里从中心点偏移3个间隔,从最左边或者是最上边开始进行加权累加 half4 color = 0; for( int l = 0; l < 7; l++ ) { half4 tap = tex2D(_MainTex, coords); color += tap * curve4[l]; // 像素值乘上对应的权值 coords += netFilterWidth; // 移到下一个像素 } return color; }
在pass 1,2中的uv值都是float2向量,然而寄存器可以一次性储存float4,即可以一个float4值存储两个uv值。并且像素着色器函数中,计算相邻像素的步骤,可以放在顶点着色器中。于是就有下面这个版本:
v2f_withBlurCoordsSGX vertBlurHorizontalSGX (appdata_img v) { v2f_withBlurCoordsSGX o; o.pos = mul (UNITY_MATRIX_MVP, v.vertex); o.uv = v.texcoord.xy; half2 netFilterWidth = _MainTex_TexelSize.xy * half2(1.0, 0.0) * _Parameter.x; half4 coords = -netFilterWidth.xyxy * 3.0; // 计算左右相邻各3个像素的坐标 o.offs[0] = v.texcoord.xyxy + coords * half4(1.0h,1.0h,-1.0h,-1.0h); coords += netFilterWidth.xyxy; o.offs[1] = v.texcoord.xyxy + coords * half4(1.0h,1.0h,-1.0h,-1.0h); coords += netFilterWidth.xyxy; o.offs[2] = v.texcoord.xyxy + coords * half4(1.0h,1.0h,-1.0h,-1.0h); return o; } v2f_withBlurCoordsSGX vertBlurVerticalSGX (appdata_img v) { v2f_withBlurCoordsSGX o; o.pos = mul (UNITY_MATRIX_MVP, v.vertex); o.uv = half4(v.texcoord.xy,1,1); half2 netFilterWidth = _MainTex_TexelSize.xy * half2(0.0, 1.0) * _Parameter.x; half4 coords = -netFilterWidth.xyxy * 3.0; // 计算上下相邻各3个像素的坐标 o.offs[0] = v.texcoord.xyxy + coords * half4(1.0h,1.0h,-1.0h,-1.0h); coords += netFilterWidth.xyxy; o.offs[1] = v.texcoord.xyxy + coords * half4(1.0h,1.0h,-1.0h,-1.0h); coords += netFilterWidth.xyxy; o.offs[2] = v.texcoord.xyxy + coords * half4(1.0h,1.0h,-1.0h,-1.0h); return o; } half4 fragBlurSGX ( v2f_withBlurCoordsSGX i ) : SV_Target { half2 uv = i.uv.xy; half4 color = tex2D(_MainTex, i.uv) * curve4[3]; // 中间像素,乘上对应的权值 for( int l = 0; l < 3; l++ ) { half4 tapA = tex2D(_MainTex, i.offs[l].xy); half4 tapB = tex2D(_MainTex, i.offs[l].zw); color += (tapA + tapB) * curve4[l]; // 由于模板是对称的,可以使用相同的权值 } return color; }
结论:
通过调试,发现使用downsampler为1,iteration为2时,调整blursize可以得到较好的效果,并且性能较好。但blursize为0时,还是模糊图像,想做成那种从清晰到模糊的动画,估计还要调整一下代码。