Loading

HDU 3879 && BZOJ 1497:Base Station && 最大获利 (最大权闭合图)

http://acm.hdu.edu.cn/showproblem.php?pid=3879

http://www.lydsy.com/JudgeOnline/problem.php?id=1497

题意:给出n个点m条边,其中每个点有一个权值代表修建这个点需要耗费的钱,然后m条边里面,代表如果两个修建好的点相连的话,那么可以得到一点利润。求最大的获利。

思路:和BZOJ 1497是同一道题目。学习最大权闭合图的题目,看了一下不清楚应该怎么建图,然后只好搜一个论文来看看。http://wenku.baidu.com/view/6507a6fe2cc58bd63186bdaf.html

建图:将S与n个点相连,权值为点权,将m条边当成点与T相连,权值为边权,边的两个顶点分别再和化成点的边相连,权值为INF。

闭合图可以解决一些依赖关系,例如这道题目需要有两个顶点才可以得到一条边,边是依赖于两个顶点的形成的。

于是网络是这样的:S->站的点->边的点->T。

我们对这个网络得到的一个割 = 选择的站的花费 + 未选择的边的利润(也可以看作损失的利润),显然这个割集越小越好,即最小割。我们要求的是答案 = 选择的边的利润 - 选择的站的利润。

那么我们一开始可以先累加得到一个选择所有边的利润tot,那么恰好tot - 最小割 = 选择所有边的利润 - 未选择边的利润 - 选择的站的花费 = 选择的边的利润 - 选择的站的利润 = 答案。

所以跑一遍最大流后就用tot - 最大流就可以得到答案了。

记得边的数组要开大一点。

 1 #include <cstdio>
 2 #include <cstring>
 3 #include <algorithm>
 4 #include <queue>
 5 using namespace std;
 6 #define INF 0x3f3f3f3f
 7 #define N 60010
 8 #define M 350010 // 30w不过
 9 struct Edge {
10     int u, v, nxt, cap;
11     Edge () {}
12     Edge (int u, int v, int nxt, int cap) : u(u), v(v), nxt(nxt), cap(cap) {}
13 } edge[M];
14 int head[N], tot, S, T, cur[N], dis[N], gap[N], pre[N];
15 
16 void Add(int u, int v, int cap) {
17     edge[tot] = Edge(u, v, head[u], cap); head[u] = tot++;
18     edge[tot] = Edge(v, u, head[v], 0); head[v] = tot++;
19 }
20 
21 void BFS() {
22     queue<int> que;
23     que.push(T);
24     memset(dis, INF, sizeof(dis));
25     memset(gap, 0, sizeof(gap));
26     gap[0]++; dis[T] = 0;
27     while(!que.empty()) {
28         int u = que.front(); que.pop();
29         for(int i = head[u]; ~i; i = edge[i].nxt) {
30             if(dis[edge[i].v] != INF) continue;
31             dis[edge[i].v] = dis[u] + 1;
32             gap[dis[edge[i].v]]++;
33             que.push(edge[i].v);
34         }
35     }
36 }
37 
38 int ISAP(int n) {
39     BFS();
40     memcpy(cur, head, sizeof(cur));
41     int u = pre[S] = S, flow, ans = 0, index, i;
42     while(dis[S] < n) {
43         if(u == T) {
44             flow = INF;
45             for(i = S; i != T; i = edge[cur[i]].v)
46                 if(flow > edge[cur[i]].cap) flow = edge[cur[i]].cap, index = i;
47             for(i = S; i != T; i = edge[cur[i]].v)
48                 edge[cur[i]].cap -= flow, edge[cur[i]^1].cap += flow;
49             u = index; ans += flow;
50         }
51         for(i = cur[u]; ~i; i = edge[i].nxt) if(edge[i].cap && dis[edge[i].v] + 1 == dis[u]) break;
52         if(~i) { cur[u] = i; pre[edge[i].v] = u; u = edge[i].v; }
53         else {
54             if(--gap[dis[u]] == 0) break;
55             int md = n + 1;
56             for(i = head[u]; ~i; i = edge[i].nxt)
57                 if(edge[i].cap && dis[edge[i].v] < md) md = dis[edge[i].v], cur[u] = i;
58             gap[dis[u] = md + 1]++;
59             u = pre[u];
60         }
61     }
62     return ans;
63 }
64 
65 int main() {
66     int n, m;
67     while(~scanf("%d%d", &n, &m)) {
68         memset(head, -1, sizeof(head));
69         tot = 0; S = 0; T = n + m + 1;
70         for(int i = 1; i <= n; i++) {
71             int w; scanf("%d", &w);
72             Add(S, i, w); // 源点和站点相连
73         }
74         int tot = 0;
75         for(int i = 1; i <= m; i++) {
76             int a, b, c;
77             scanf("%d%d%d",&a, &b, &c);
78             tot += c; // 选择边的利润和
79             Add(i + n, T, c); // 边的点和汇点相连
80             Add(a, i + n, INF);
81             Add(b, i + n, INF);
82         }
83         printf("%d\n", tot - ISAP(T + 1));
84     }
85     return 0;
86 }

 

posted @ 2017-01-28 14:16  Shadowdsp  阅读(216)  评论(0编辑  收藏  举报