ACM-ICPC 2018 焦作赛区网络预赛 L Poor God Water(矩阵快速幂,BM)
https://nanti.jisuanke.com/t/31721
题意
有肉,鱼,巧克力三种食物,有几种禁忌,对于连续的三个食物:1.这三个食物不能都相同;2.若三种食物都有的情况,巧克力不能在中间;3.如果两边是巧克力,中间不能是肉或鱼。求方案数。
分析
将meat , chocolate,fish 用 0 ,1 , 2 表示。
对于 n 来说,我们只关注后两位,因为 若 n - 1 的所有方案解决的话,我们在 n - 1 的方案添加0, 1,2 就行,然后根据禁忌 去除不可能的方案。
我们根据次状态 来更新现状态,然后矩阵快速幂。最后得到的矩阵的总和就是答案了。
另外,暴力推前十几项,然后用BM居然也能过!!黑科技黑科技
#include<bits/stdc++.h> using namespace std; typedef long long ll; const int maxn = 1e5+10; const int mod = 1e9 + 7; const int N = 9; struct Matrix{ ll a[N][N]; Matrix(){ for(int i=0;i<N;i++) for(int j=0;j<N;j++) a[i][j]=0; } }; Matrix mul(Matrix x,Matrix y){ Matrix res; for(int i=0;i<N;i++) for(int j=0;j<N;j++) for(int k=0;k<N;k++) res.a[i][j]=(res.a[i][j]+x.a[i][k]*y.a[k][j]%mod)%mod; return res; } Matrix qpow(Matrix a,ll b){ Matrix res; for(int i=0;i<N;i++) res.a[i][i]=1; while(b){ if(b&1) res=mul(res,a); b>>=1; a=mul(a,a); } return res; } int A[9][9]={ 0,0,0,1,0,0,1,0,0, 1,0,0,0,0,0,1,0,0, 1,0,0,1,0,0,1,0,0, 0,1,0,0,1,0,0,0,0, 0,1,0,0,0,0,0,1,0, 0,0,0,0,1,0,0,1,0, 0,0,1,0,0,1,0,0,1, 0,0,1,0,0,0,0,0,1, 0,0,1,0,0,1,0,0,0 }; int main(){ Matrix tmp; for(int i=0;i<N;i++) for(int j=0;j<N;j++) tmp.a[i][j]=A[i][j]; int t; ll n; scanf("%d",&t); while(t--){ scanf("%lld",&n); if(n==1) puts("3"); else if(n==2) puts("9"); else{ Matrix ans; ans=qpow(tmp,n-2); ll res=0; for(int i=0;i<N;i++) for(int j=0;j<N;j++) res=(res+ans.a[i][j])%mod; printf("%lld\n",res); } } return 0; }
附上杜教BM模板。解决任何线性递推式
#include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <vector> #include <string> #include <map> #include <set> #include <cassert> #include<bits/stdc++.h> using namespace std; #define rep(i,a,n) for (int i=a;i<n;i++) #define per(i,a,n) for (int i=n-1;i>=a;i--) #define pb push_back #define mp make_pair #define all(x) (x).begin(),(x).end() #define fi first #define se second #define SZ(x) ((int)(x).size()) typedef vector<int> VI; typedef long long ll; typedef pair<int,int> PII; const ll mod=1000000007; ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;} // head int _,n; namespace linear_seq { const int N=10010; ll res[N],base[N],_c[N],_md[N]; vector<int> Md; void mul(ll *a,ll *b,int k) { rep(i,0,k+k) _c[i]=0; rep(i,0,k) if (a[i]) rep(j,0,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod; for (int i=k+k-1;i>=k;i--) if (_c[i]) rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod; rep(i,0,k) a[i]=_c[i]; } int solve(ll n,VI a,VI b) { // a 系数 b 初值 b[n+1]=a[0]*b[n]+... // printf("%d\n",SZ(b)); ll ans=0,pnt=0; int k=SZ(a); assert(SZ(a)==SZ(b)); rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1; Md.clear(); rep(i,0,k) if (_md[i]!=0) Md.push_back(i); rep(i,0,k) res[i]=base[i]=0; res[0]=1; while ((1ll<<pnt)<=n) pnt++; for (int p=pnt;p>=0;p--) { mul(res,res,k); if ((n>>p)&1) { for (int i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0; rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod; } } rep(i,0,k) ans=(ans+res[i]*b[i])%mod; if (ans<0) ans+=mod; return ans; } VI BM(VI s) { VI C(1,1),B(1,1); int L=0,m=1,b=1; rep(n,0,SZ(s)) { ll d=0; rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod; if (d==0) ++m; else if (2*L<=n) { VI T=C; ll c=mod-d*powmod(b,mod-2)%mod; while (SZ(C)<SZ(B)+m) C.pb(0); rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod; L=n+1-L; B=T; b=d; m=1; } else { ll c=mod-d*powmod(b,mod-2)%mod; while (SZ(C)<SZ(B)+m) C.pb(0); rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod; ++m; } } return C; } int gao(VI a,ll n) { VI c=BM(a); c.erase(c.begin()); rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod; return solve(n,c,VI(a.begin(),a.begin()+SZ(c))); } }; int main() { int T; ll n; cin>>T; vector<int>v; v.push_back(3); v.push_back(9); v.push_back(20); v.push_back(46); v.push_back(106); v.push_back(244); v.push_back(560); v.push_back(1286); v.push_back(2956); v.push_back(6794); v.push_back(15610); v.push_back(35866); v.push_back(82416); while (T--) { scanf("%lld",&n); printf("%d\n",linear_seq::gao(v,n-1)); } }