一、算法原理
请参考我在大学时写的《QR方法求矩阵全部特征值》,其包含原理、实例及C语言实现:http://www.docin.com/p-114587383.html
二、源码分析
这里有一篇文章《使用MapRedece进行QR分解的步骤》可以看看
/** For an <tt>m x n</tt> matrix <tt>A</tt> with <tt>m >= n</tt>, the QR decomposition is an <tt>m x n</tt> orthogonal matrix <tt>Q</tt> and an <tt>n x n</tt> upper triangular matrix <tt>R</tt> so that <tt>A = Q*R</tt>. <P> The QR decomposition always exists, even if the matrix does not have full rank, so the constructor will never fail. The primary use of the QR decomposition is in the least squares solution of non-square systems of simultaneous linear equations. This will fail if <tt>isFullRank()</tt> returns <tt>false</tt>. */ public class QRDecomposition implements QR { private final Matrix q; private final Matrix r; private final boolean fullRank; private final int rows; private final int columns; /** * Constructs and returns a new QR decomposition object; computed by Householder reflections; The * decomposed matrices can be retrieved via instance methods of the returned decomposition * object. * * @param a A rectangular matrix. * @throws IllegalArgumentException if <tt>A.rows() < A.columns()</tt>. */ public QRDecomposition(Matrix a) { rows = a.rowSize();//m int min = Math.min(a.rowSize(), a.columnSize()); columns = a.columnSize();//n Matrix qTmp = a.clone(); boolean fullRank = true; r = new DenseMatrix(min, columns); for (int i = 0; i < min; i++) { Vector qi = qTmp.viewColumn(i); double alpha = qi.norm(2); if (Math.abs(alpha) > Double.MIN_VALUE) { qi.assign(Functions.div(alpha)); } else { if (Double.isInfinite(alpha) || Double.isNaN(alpha)) { throw new ArithmeticException("Invalid intermediate result"); } fullRank = false; } r.set(i, i, alpha); for (int j = i + 1; j < columns; j++) { Vector qj = qTmp.viewColumn(j); double norm = qj.norm(2); if (Math.abs(norm) > Double.MIN_VALUE) { double beta = qi.dot(qj); r.set(i, j, beta); if (j < min) { qj.assign(qi, Functions.plusMult(-beta)); } } else { if (Double.isInfinite(norm) || Double.isNaN(norm)) { throw new ArithmeticException("Invalid intermediate result"); } } } } if (columns > min) { q = qTmp.viewPart(0, rows, 0, min).clone(); } else { q = qTmp; } this.fullRank = fullRank; } /** * Generates and returns the (economy-sized) orthogonal factor <tt>Q</tt>. * * @return <tt>Q</tt> */ @Override public Matrix getQ() { return q; } /** * Returns the upper triangular factor, <tt>R</tt>. * * @return <tt>R</tt> */ @Override public Matrix getR() { return r; } /** * Returns whether the matrix <tt>A</tt> has full rank. * * @return true if <tt>R</tt>, and hence <tt>A</tt>, has full rank. */ @Override public boolean hasFullRank() { return fullRank; } /** * Least squares solution of <tt>A*X = B</tt>; <tt>returns X</tt>. * * @param B A matrix with as many rows as <tt>A</tt> and any number of columns. * @return <tt>X</tt> that minimizes the two norm of <tt>Q*R*X - B</tt>. * @throws IllegalArgumentException if <tt>B.rows() != A.rows()</tt>. */ @Override public Matrix solve(Matrix B) { if (B.numRows() != rows) { throw new IllegalArgumentException("Matrix row dimensions must agree."); } int cols = B.numCols(); Matrix x = B.like(columns, cols); // this can all be done a bit more efficiently if we don't actually // form explicit versions of Q^T and R but this code isn't so bad // and it is much easier to understand Matrix qt = getQ().transpose(); Matrix y = qt.times(B); Matrix r = getR(); for (int k = Math.min(columns, rows) - 1; k >= 0; k--) { // X[k,] = Y[k,] / R[k,k], note that X[k,] starts with 0 so += is same as = x.viewRow(k).assign(y.viewRow(k), Functions.plusMult(1 / r.get(k, k))); // Y[0:(k-1),] -= R[0:(k-1),k] * X[k,] Vector rColumn = r.viewColumn(k).viewPart(0, k); for (int c = 0; c < cols; c++) { y.viewColumn(c).viewPart(0, k).assign(rColumn, Functions.plusMult(-x.get(k, c))); } } return x; } /** * Returns a rough string rendition of a QR. */ @Override public String toString() { return String.format(Locale.ENGLISH, "QR(%d x %d,fullRank=%s)", rows, columns, hasFullRank()); } }