leetcode 63. Unique Paths II

题目

Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.

[    
 [0,0,0],    
 [0,1,0],    
 [0,0,0]    
]

The total number of unique paths is 2.

Note: m and n will be at most 100.

解题思路

  1. 当(i, j)有障碍时dp[i][j] = 0

  2. dp[0][j]和dp[i][0]未必为1.
    dp[0][j] = obstacleGrid[0][j] ? 0 : dp[0][j-1]
    dp[i][0] = obstacleGrid[i][0] ? 0 : dp[i-1][0]

  3. 当obstacleGrid [0][0] = 1时,return 0

解题代码

class Solution {
public:

    int uniquePathsWithObstacles(const vector<vector<int>>& obstacleGrid) const {
        if (obstacleGrid[0][0] == 1)	return 0;
        
        vector<int>::size_type m = obstacleGrid.size();
        vector<int>::size_type n = obstacleGrid[0].size();
        
        vector<vector<int>> table(m, vector<int>(n));
        
        for (vector<int>::size_type i = 1; i < m; i++) {
        	//table[i-1][0] 对于 table[i][0] 非常重要,决定了后面节点是否可达
        	table[i][0] = (table[i - 1][0] && obstacleGrid[i][0] == 0) ? 1 : 0;	
        }
        
        for (vector<int>::size_type i = 1; i < n; i++) {
        	//table[0][i] 对于 table[0][i-1] 非常重要,决定了后面节点是否可达
        	table[0][i] = (table[0][i - 1] && obstacleGrid[0][i] == 0) ? 1 : 0;	
        }
        
        for (vector<int>::size_type i = 1; i < m; i++) {
        	for (vector<int>::size_type j = 1; j < n; j++) {
        		table[i][j] = table[i][j - 1] + table[i - 1][j];
        
        		if (obstacleGrid[i][j] == 1)
        			table[i][j] = 0;
        	}
        }
        
        return obstacleGrid[m - 1][n - 1] ? 0 : table[m - 1][n - 1];
    }

};
posted @ 2016-06-21 07:57  健康平安快乐  阅读(163)  评论(0编辑  收藏  举报