Python之并发编程-concurrent

 

 

方法介绍

#1 介绍
concurrent.futures模块提供了高度封装的异步调用接口
ThreadPoolExecutor:线程池,提供异步调用
ProcessPoolExecutor: 进程池,提供异步调用
Both implement the same interface, which is defined by the abstract Executor class.

#2 基本方法
#submit(fn, *args, **kwargs)
异步提交任务

obj = p.submit(task,i).result() #相当于apply同步方法
obj = p.submit(task,i) #相当于apply_async异步方法


#map(func, *iterables, timeout=None, chunksize=1) 取代for循环submit的操作 #shutdown(wait=True) 相当于进程池的pool.close()+pool.join()操作 wait=True,等待池内所有任务执行完毕回收完资源后才继续 wait=False,立即返回,并不会等待池内的任务执行完毕 但不管wait参数为何值,整个程序都会等到所有任务执行完毕 submit和map必须在shutdown之前 #result(timeout=None) 取得结果 #add_done_callback(fn) 回调函数

 

示例

#介绍
The ProcessPoolExecutor class is an Executor subclass that uses a pool of processes to execute calls asynchronously. ProcessPoolExecutor uses the multiprocessing module, which allows it to side-step the Global Interpreter Lock but also means that only picklable objects can be executed and returned.

class concurrent.futures.ProcessPoolExecutor(max_workers=None, mp_context=None)
An Executor subclass that executes calls asynchronously using a pool of at most max_workers processes. If max_workers is None or not given, it will default to the number of processors on the machine. If max_workers is lower or equal to 0, then a ValueError will be raised.


#用法
from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor

import os,time,random
def task(n):
    print('%s is runing' %os.getpid())
    time.sleep(random.randint(1,3))
    return n**2

if __name__ == '__main__':

    executor=ProcessPoolExecutor(max_workers=3)

    futures=[]
    for i in range(11):
        future=executor.submit(task,i)
        futures.append(future)
    executor.shutdown(True)
    print('+++>')
    for future in futures:
        print(future.result())
ProcessPoolExecutor
#介绍
ThreadPoolExecutor is an Executor subclass that uses a pool of threads to execute calls asynchronously.
class concurrent.futures.ThreadPoolExecutor(max_workers=None, thread_name_prefix='')
An Executor subclass that uses a pool of at most max_workers threads to execute calls asynchronously.

Changed in version 3.5: If max_workers is None or not given, it will default to the number of processors on the machine, multiplied by 5, assuming that ThreadPoolExecutor is often used to overlap I/O instead of CPU work and the number of workers should be higher than the number of workers for ProcessPoolExecutor.

New in version 3.6: The thread_name_prefix argument was added to allow users to control the threading.Thread names for worker threads created by the pool for easier debugging.

#用法
与ProcessPoolExecutor相同
ThreadPoolExecutor
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor
import time

== == == == == == == == == == == == == == == == == == == == == == == ==
例子


def task(i):
    time.sleep(1)
    print(i)


if __name__ == '__main__':

    p = ThreadPoolExecutor(10)
    # p = ProcessPoolExecutor(10)
    for row in range(100):
        p.submit(task, row)

== == == == == == == == == == == == == == == == == == == == == == == ==

def run(self, host):
    server_info = PluginManager(host).exec_plugin()
    self.post_asset(server_info)


def execute(self):
    p = ThreadPoolExecutor(10)  # 线程池
    host_list = self.get_host()
    for host in host_list:
        p.submit(self.run, host)
        # server_info = PluginManager(host).exec_plugin()
        # self.post_asset(server_info)
cmdb项目的某个东东
from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor

import os,time,random
def task(n):
    print('%s is runing' %os.getpid())
    time.sleep(random.randint(1,3))
    return n**2

if __name__ == '__main__':

    executor=ThreadPoolExecutor(max_workers=3)

    # for i in range(11):
    #     future=executor.submit(task,i)

    executor.map(task,range(1,12)) #map取代了for+submit

map的用法
map的用法
from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor
import requests
import time,os
def get_page(url):
    print('<%s> is getting [%s]'%(os.getpid(),url))
    response = requests.get(url)
    if response.status_code==200:  #200代表状态:下载成功了
        return {'url':url,'text':response.text}
def parse_page(res):
    res = res.result()
    print('<%s> is getting [%s]'%(os.getpid(),res['url']))
    with open('db.txt','a') as f:
        parse_res = 'url:%s size:%s\n'%(res['url'],len(res['text']))
        f.write(parse_res)
if __name__ == '__main__':
    # p = ThreadPoolExecutor()
    p = ProcessPoolExecutor()
    l = [
        'http://www.baidu.com',
        'http://www.baidu.com',
        'http://www.baidu.com',
        'http://www.baidu.com',
    ]
    for url in l:
        res = p.submit(get_page,url).add_done_callback(parse_page) #这里的回调函数拿到的是一个对象。得
        #  先把返回的res得到一个结果。即在前面加上一个res.result() #谁好了谁去掉回调函数
                                # 回调函数也是一种编程思想。不仅开线程池用,开线程池也用
    p.shutdown()  #相当于进程池里的close和join
    print('',os.getpid())
add_done_callback
url_list = [
    'http://www.cnblogs.com/wupeiqi/articles/6229292.html',
    'http://www.baidu.com',
    'http://www.hupu.com',
]


import requests

def task(url):
    res = requests.get(url)
    return res.content

def callback(future):
    print(future.result())


def run():

    pool = ThreadPoolExecutor(10)
    # pool = ProcessPoolExecutor(10)
    # res_list = []
    for url in url_list:
        res = pool.submit(task,url)
        # res_list.append(res)
        res.add_done_callback(callback)

    pool.shutdown(wait=True)  # 等待完成才进行后续代码
    # for res in res_list:
    #     print(res.result())


# run()
add_done_callback2(爬虫)

 

 

 

参考

https://docs.python.org/dev/library/concurrent.futures.html

 

posted @ 2018-05-04 22:45  fat39  阅读(433)  评论(0编辑  收藏  举报