[译] 第十二天: OpenCV - Java开发者的人脸识别

前言

今天的30天挑战,我决定学习怎样用Java实现人脸识别。人脸识别有助于识别任意(数字)图像中的人脸。搜索调查一番后,我发现OpenCV库可以有助于在图像中检测人脸。但是我没找到给Java开发者使用OpenCV库的入门指导,这篇博客也许对要找相关介绍的人有用。

什么是OpenCV?

OpenCV(Open Source Computer Vision)是一个开源的计算机视觉算法库,用C/C++编写,设计为发挥多核心优势,提供C++, C, PythonJava接口,支持所有主流系统如Windows, Linux, Mac OS, iOS Android. 

Github 仓库

今天的domo放在github: day12-face-detection. 

开始OpenCV

要开始OpenCV, 先要从官网下载最新的OpenCV包到本地,这里我用版本2.4.7.

 

下载好后,用以下方式解压。

$ tar xvf opencv-2.4.7.tar.gz

路径换到Opencv-2.4.7

$ cd opencv-2.4.7

构建OpenCV jar

我花了好多时间来理解怎样得到OpenCV jar文件。Java介绍文档里说OpenCV jarbuild文件夹里,对于Windows用户来说是的,但是LinuxMac OS不是,要构建OpenCV jar,执行以下命令。

$ cd opencv-2.4.7 
$ mkdir build 
$ cd build/ 
$ cmake -G "Unix Makefiles" -D CMAKE_CXX_COMPILER=/usr/bin/g++ -D CMAKE_C_COMPILER=/usr/bin/gcc -D WITH_CUDA=ON ..  
$make -j4  
$ make install

以上命令会在opencv-2.4.7/build/bin路径下创建opencv-247.jar文件,是Java绑定到原生安装的OpenCV.

下载Eclipse

如果你还没安装Eclipse,官网下载最新版本,目前最新版本叫Kepler.

 

安装Eclipse很简单,只需解压下载的安装包。在linux或者mac上,打开命令管理器输入以下命令。

$ tar -xzvf eclipse-jee-kepler-R-*.tar.gz 

 

Windows上可以用7-zip或者其他解压工具解压,解压后,在你解压的路径会有一个eclipse的文件夹,可以给可执行文件创建快捷键。

添加用户库

打开Eclipse IDE导航到项目区,从Windows > Preferences > Java > Build Path > User Libraries, 选择添加新库。

 

命名openCV-2.4.7OK.

 

点击Add External Jars,选择opencv-247.jar.

 

选择Native library location点击Edit.

 

点击External Folder

 

指定opencv-2.4.7/build/lib下的lib路径。

 

最后点击OK, 现在就成功添加OpenCV 用户库了。

新建Java项目

通过File > New > Other > Java新建Java项目,创建后,右击项目配置build路径。

 

Libraries页,点击Add Library.

 

 

选择User Library.

 

选择上一步添加的OpenCV-2.4.7用户库,点击Finish.

 

最后,Java项目会包括OpenCV-2.4.7用户库。

写人脸识别

在上一步添加的项目里添加新类,加入以下代码。

package com.shekhar.facedetection;
 
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.MatOfRect;
import org.opencv.core.Point;
import org.opencv.core.Rect;
import org.opencv.core.Scalar;
import org.opencv.highgui.Highgui;
import org.opencv.objdetect.CascadeClassifier;
 
public class FaceDetector {
 
    public static void main(String[] args) {
 
        System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
        System.out.println("\nRunning FaceDetector");
 
        CascadeClassifier faceDetector = new CascadeClassifier(FaceDetector.class.getResource("haarcascade_frontalface_alt.xml").getPath());
        Mat image = Highgui
                .imread(FaceDetector.class.getResource("shekhar.JPG").getPath());
 
        MatOfRect faceDetections = new MatOfRect();
        faceDetector.detectMultiScale(image, faceDetections);
 
        System.out.println(String.format("Detected %s faces", faceDetections.toArray().length));
 
        for (Rect rect : faceDetections.toArray()) {
            Core.rectangle(image, new Point(rect.x, rect.y), new Point(rect.x + rect.width, rect.y + rect.height),
                    new Scalar(0, 255, 0));
        }
 
        String filename = "ouput.png";
        System.out.println(String.format("Writing %s", filename));
        Highgui.imwrite(filename, image);
    }

}
View Code

以上代码做了以下动作:

  1. 加载原生OpenCV库以便引用Java API.
  2. 创建一个CascadeClassifier实例传递加载的分类器的文件名。
  3. 然后把图片转换成Java APIHighui类能接受的格式,MatOpenCV C++N维密集数组。
  4. 然后在分类器上调用detectMultiScale方法传递图片和MatOfRect对象,之后,MatOfRect就会有认识检测功能。
  5. 递归所有的人脸检测并把图片标识成矩形。
  6. 最后生成output.png图片文件。

 

显示如下,这是我的检测前后的图片。

 

这是今天的内容,继续给反馈吧。

 

原文:https://www.openshift.com/blogs/day-12-opencv-face-detection-for-java-developers

posted on 2013-12-25 17:40  百花宫  阅读(5552)  评论(0编辑  收藏  举报