Hive UDF初探

1. 引言

前一篇中,解决了Hive表中复杂数据结构平铺化以导入Kylin的问题,但是平铺之后计算广告日志的曝光PV是翻倍的,因为一个用户对应于多个标签。所以,为了计算曝光PV,我们得另外创建视图。

分析需求:

  • 每个DSP上的曝光PV,标签覆盖的曝光PV;
  • 累计曝光PV,累计标签覆盖曝光PV

相当于cube(dsp, tag) + measure(pv),HiveQL如下:

select dsp, tag, count(*) as pv
from ad_view
where view = 'view' and day_time between '2016-04-18' and '2016-04-24'
group by dsp, tag with cube;

现在问题来了:如何将原始表中的tags array<struct<tag:string,label:string,src:string>> 转换成有标签(taged)、无标签(empty)呢?显而易见的办法,为字段tags写一个UDF来判断是否有标签。

2. 实战

基本介绍

user-defined function (UDF)包括:

  • 对于字段进行转换操作的函数,如round()、abs()、concat()等;
  • 聚集函数user-defined aggregate functions (UDAFs),比如sum()、avg()等;
  • 表生成函数user-defined table generating functions (UDTFs),生成多列或多行数据,比如explode()、inline()等

UDTF的使用在与select语句使用时受到了限制,比如,不能与其他的列组合出现:

hive> SELECT name, explode(subordinates) FROM employees;
FAILED: Error in semantic analysis: UDTF's are not supported outside the SELECT clause, nor nested in expressions

Hive提供LATERAL VIEW关键字,对UDTF的输入进行包装(wrap),如此可以达到列组合的效果:

hive> SELECT name, sub
> FROM employees
> LATERAL VIEW explode(subordinates) subView AS sub;

UDF与GenericUDF

org.apache.hadoop.hive.ql.exec.UDF是字段转换操作的基类,提供对于简单数据类型进行转换操作。在实现转换操作时,需要重写evaluate()方法。较UDF抽象类,org.apache.hadoop.hive.ql.udf.generic.GenericUDF提供更为复杂的处理方法类,包括三个方法:

  • initialize(ObjectInspector[] arguments),检查输入参数的类型、确定返回值的类型;
  • evaluate(DeferredObject[] arguments),字段转换操作的实现函数,其返回值的类型与initialize方法中所指定的返回类型保持一致;
  • getDisplayString(String[] children),给Hadoop任务展示debug信息的。

判断tags array<struct<tag:string,label:string,src:string>>是否为空标签(EMPTY)的UDF实现如下:

@Description(name = "checkTag",
        value = "_FUNC_(array<struct>) - from the input array of struct "+
                "returns the TAGED or EMPTY(no tag).",
        extended = "Example:\n"
                + " > SELECT _FUNC_(tags_array) FROM src;")
public class CheckTag extends GenericUDF {
  private ListObjectInspector listOI;

  public ObjectInspector initialize(ObjectInspector[] arguments) throws UDFArgumentException {
    if (arguments.length != 1) {
      throw new UDFArgumentLengthException("only takes 1 arguments: List<T>");
    }

    ObjectInspector a = arguments[0];
    if (!(a instanceof ListObjectInspector)) {
      throw new UDFArgumentException("first argument must be a list / array");
    }
    this.listOI = (ListObjectInspector) a;

    if(!(listOI.getListElementObjectInspector() instanceof StructObjectInspector)) {
      throw new UDFArgumentException("first argument must be a list of struct");
    }

    return PrimitiveObjectInspectorFactory.javaStringObjectInspector;
  }

  public Object evaluate(DeferredObject[] arguments) throws HiveException {
    if(listOI == null || listOI.getListLength(arguments[0].get()) == 0) {
      return "null_field";
    }

    StructObjectInspector structOI = (StructObjectInspector) listOI.getListElementObjectInspector();
    String tag = structOI.getStructFieldData(listOI.getListElement(arguments[0].get(), 0),
            structOI.getStructFieldRef("tag")).toString();

    if (listOI.getListLength(arguments[0].get()) == 1 && tag.equals("EMPTY")) {
      return "EMPTY";
    }
    return "TAGED";
  }

  public String getDisplayString(String[] children) {
    return "check tag whether is empty";
  }

}

还需添加依赖:

<dependency>
  <groupId>org.apache.hive</groupId>
  <artifactId>hive-exec</artifactId>
  <version>0.14.0</version>
  <scope>provided</scope>
</dependency>

<dependency>
  <groupId>org.apache.hadoop</groupId>
  <artifactId>hadoop-common</artifactId>
  <version>2.5.0-cdh5.3.2</version>
  <scope>provided</scope>
</dependency>

编译后打成jar包,放在HDFS上,然后add jar即可调用该UDF了:

add jar hdfs://path/to/udf-1.0-SNAPSHOT.jar;
create temporary function checktag as 'com.hive.udf.CheckTag';

create view if not exists yooshu_view
partitioned on (day_time)
as
select uid, dsp, view, click, checktag(tags) as tag, day_time
from ad_base;
posted @ 2016-05-05 18:03  Treant  阅读(6153)  评论(0编辑  收藏  举报