【实数系统】 03 - 极限
1. 实数基本定理
实数的构造理论为实数及其完备性奠定了严格的基础,但为了研究分析学的方便,我们需要更符合“直觉”的结论。在这之前,先来了解一些重要的概念。
对于一个基本序列,我们的直觉是它将逐渐逼近某个数,这个数一般称为数列的极限。极限的严格定义由维尔斯特拉斯(Weierstrass)给出:一个实数列
数列是关于自然数的函数,如果将定义域换成实数集,就成为我们所熟悉的一般意义上的函数。关于实数集,大家最熟悉的就是区间(开区间、闭区间、半开半闭区间),开区间
关于数列还有几个有用的概念,比如逐渐递增或递减的数列称为单调数列,数列中任取无穷个元素按原序组成的数列称为其子列。如果数列或实数集的所有数不大于
有了这些基本概念,我们就来看看实数的基本定理,它们又叫实数连续性(continuuity)的基本原理。其中定理(3)(8)对函数也同时成立,相关定理请自行脑补。
(1)戴德金分割定理:实数集的戴德金分割的右集总有最小值;
(2)确界存在定理:有上(下)界的实数集必有上(下)确界;
(3)单调有界定理:单调有界的数列必收敛;
(4)区间套定理:至少有一个实数属于所有区间套;
(5)有限覆盖定理:闭区间是紧集。
(6)聚点定理:有界实数集至少有一个聚点;
(7)子列定理:有界数列必有收敛子列;
(8)柯西判定定理:实数基本序列收敛。
大部分定理都很“直观”,我们希望可以直接使用它们,而不是通过实数定义来证明。这样的要求并不过分,况且我们在上一篇中也已经证明了(1)或(8)是成立的。当抛开实数定义时,我们唯一的顾虑是:它们之间互相兼容吗?是否存在矛盾呢?答案是让人欣慰的,它们不仅兼容,甚至是等价的!也就是说以任何一个作为公理,都可以成功推导出其他7个定理。相信你已经明白我的意思了,现在我们就来构造一个推导环路,来串联这8个定理。
这里选取的环是最讨巧的证明方法,你可以尝试其它路径,也许会有有趣的发现。有界集的聚点也必然是有界的,可以证明这些聚点的确界也是聚点,它们的上(下)确界也称为变量的上(下)极限,记作
2. 极限理论
接下来的内容将数列和函数合并讨论,为了论述方便统一用“变量”来表示它们。关于极限我们有三个层次的问题需要解决:(1)证明变量收敛于某个值;(2)判断变量的敛散性;(3)求变量的极限值。下面就从这三方面介绍一些常用方法和结论,有些方法技巧性很强,需要多加思考和练习,而某些结果被广泛应用,需要作为基本结论看待。
2.1 证明收敛
判断变量收敛于某个值往往出现于已经知道极限的情形,经常用于检验一些比较直观的结论,比如初等函数的极限值。还有一些场合,我们可以先猜测极限值,然后再用定义去证明。证明中会涉及到不少表达式变换和不等式,需要较好的综合素养,我打算另开课题介绍常用的等式和不等式。有时证明中还要用到极限的一些简单性质,比较常用的有以下4个。
• 收敛数列有界,收敛函数在足够小的领域内有界;
• 变量最终都会落在任一包含极限值的区间内;
• 变量四则运算的极限等于变量极限的四则运算;
• 复合函数的极限即是极限的函数值。
下面来几个习题来锻炼一下,请务必从极限定义出发来证明。作几点提示:(1)二项式定理是连接指数变量到幂变量的桥梁,要善用二项式定理产生合适的不等式;(2)均值不等式是把万能钥匙,随意尝试都会有神奇的效果;(3)熟练地使用极限的简单性质,对表达式做适当的缩放和限制。
• 证收敛:
• 证收敛:
• 已知
• 已知
• 求证
•
两个比较特殊的极限是
(1)
(2)
(3)
初等函数具有以下大小关系,其中
容易证明,等价变量在乘除法的极限运算中可以互相替换,这将大大简化计算。以下是常用的等价关系
•
•
•
2.2 判断敛散性
我们的第二个任务是判断变量的敛散性,广义地讲这个问题有一定难度,但借助于一些结论我们可以解决某些类型的变量。这里就介绍几种常用的结论,有时候我们可以顺便得到极限值,但更多时候只能判断敛散性。
首先就是大家可能还有印象的夹逼法则,它是说如果
• 求极限
• 求极限
有些变量是累加型的,局部变量的变化趋势最终可以表现为累加量的趋势,这就是Stolz定理:
• 已知
• 求证
•
•
有时候我们并没有极限值作为参考,判断敛散性就只能借助单调有界定理和柯西判定定理(Cauchy's criteria)。单调有界定理的使用难点往往是单调性的证明,需要用到缩放、归纳等方法,针对某些递推式还可以顺便求得极限值。来思考几个问题:
• 证明收敛并求极限:
• 证明收敛:
•
着重介绍一下数列
另外,由
使用
将以上结论推广到函数,也容易有
•
容易证明柯西判定定理和极限的定义其实是等价的,它是变量收敛的充要条件,并且不依赖于未知的极限值。在其它方法都走不通时,那就求助于柯西判定定理吧。需要强调的是,不管是极限定义还是柯西判定定理,你都要能准确地说出其否定定理,毕竟大部分数列都是发散的。考虑以下习题:
• 证明调和数列之和发散:
• 已知
2.3 求极限
最后一个任务是求变量的极限,前面其实已经包含了不少求极限的问题,除此之外还有许多问题需要用综合的方法求解,来挑战一下下面的问题吧:
• 求极限:
• 求极限:
• 已知
证得这么辛苦,一定有人要问为什么要研究极限?向前看,你已经了解到它是无穷的一个精确模型,另外极限理论还揭示了实数的本质。向后看,目前还看不到,但可以告诉你,它是分析学的基础,是人们征服“连续”所迈出的第一步。而一定意义上“连续”是包含“离散”的,它是对世界的精确度量,所以连续有时还可以应用到离散场景,比如说分析数论。另外,紧接着的微积分课程就是从极限开始的,至于微积分的重要性就不用我强调了。如果向应用学科看,数值解和逼近理论也是极限的用武之地,用足够精确的近似值来替代准确值是工业生产中常见需求。看这个简单的递推数列
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 地球OL攻略 —— 某应届生求职总结
· 提示词工程——AI应用必不可少的技术
· Open-Sora 2.0 重磅开源!
· 周边上新:园子的第一款马克杯温暖上架