[Codility] MaxDoubleSliceSum

A non-empty zero-indexed array A consisting of N integers is given.

A triplet (X, Y, Z), such that 0 ≤ X < Y < Z < N, is called a double slice.

The sum of double slice (X, Y, Z) is the total of A[X + 1] + A[X + 2] + ... + A[Y − 1] + A[Y + 1] + A[Y + 2] + ... + A[Z − 1].

For example, array A such that:

    A[0] = 3
    A[1] = 2
    A[2] = 6
    A[3] = -1
    A[4] = 4
    A[5] = 5
    A[6] = -1
    A[7] = 2

contains the following example double slices:

  • double slice (0, 3, 6), sum is 2 + 6 + 4 + 5 = 17,
  • double slice (0, 3, 7), sum is 2 + 6 + 4 + 5 − 1 = 16,
  • double slice (3, 4, 5), sum is 0.

The goal is to find the maximal sum of any double slice.

Write a function:

int solution(int A[], int N);

that, given a non-empty zero-indexed array A consisting of N integers, returns the maximal sum of any double slice.

For example, given:

    A[0] = 3
    A[1] = 2
    A[2] = 6
    A[3] = -1
    A[4] = 4
    A[5] = 5
    A[6] = -1
    A[7] = 2

the function should return 17, because no double slice of array A has a sum of greater than 17.

Assume that:

  • N is an integer within the range [3..100,000];
  • each element of array A is an integer within the range [−10,000..10,000].

Complexity:

  • expected worst-case time complexity is O(N);
  • expected worst-case space complexity is O(N), beyond input storage (not counting the storage required for input arguments).

Elements of input arrays can be modified.

Copyright 2009–2015 by Codility Limited. All Rights Reserved. Unauthorized copying, publication or disclosure prohibited.

分别从左边和右边扫描数组,记录从左边以及右边到当前元素的最大连续区间和,然后再遍历一遍数组,找到left[i]+right[i],别忘了再减掉当前元素,另外注意要把第一个元素和最后一个元素设为0。

 1 // you can use includes, for example:
 2 #include <algorithm>
 3 
 4 // you can write to stdout for debugging purposes, e.g.
 5 // cout << "this is a debug message" << endl;
 6 
 7 int solution(vector<int> &A) {
 8     // write your code in C++11
 9     if (A.size() <= 3) return 0;
10     vector<int> left(A), right(A);
11     int n = A.size();
12     left[0] = left[n-1] = 0;
13     right[0] = right[n-1] = 0;
14     for (int i = 1; i < n - 1; ++i) {
15         left[i] = max(left[i], left[i] + left[i-1]);
16         right[n-1-i] = max(right[n-1-i], right[n-1-i] + right[n-i]);
17     }
18     int res = 0;
19     for (int i = 1; i < n - 1; ++i) {
20         res = max(res, left[i] + right[i] - 2 * A[i]);
21     }
22     return res;
23 }

 

posted @ 2015-04-24 14:08  Eason Liu  阅读(424)  评论(0编辑  收藏  举报