[Leetcode] Scramble String
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great"
:
great / \ gr eat / \ / \ g r e at / \ a t
To scramble the string, we may choose any non-leaf node and swap its two children.
For example, if we choose the node "gr"
and swap its two children, it produces a scrambled string "rgeat"
.
rgeat / \ rg eat / \ / \ r g e at / \ a t
We say that "rgeat"
is a scrambled string of "great"
.
Similarly, if we continue to swap the children of nodes "eat"
and "at"
, it produces a scrambled string "rgtae"
.
rgtae / \ rg tae / \ / \ r g ta e / \ t a
We say that "rgtae"
is a scrambled string of "great"
.
Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.
分析:
这个问题是google的面试题。由于一个字符串有很多种二叉表示法,貌似很难判断两个字符串是否可以做这样的变换。
对付复杂问题的方法是从简单的特例来思考,从而找出规律。
先考察简单情况:
字符串长度为1:很明显,两个字符串必须完全相同才可以。
字符串长度为2:当s1="ab", s2只有"ab"或者"ba"才可以。
对于任意长度的字符串,我们可以把字符串s1分为a1,b1两个部分,s2分为a2,b2两个部分,满足((a1~a2) && (b1~b2))或者 ((a1~b2) && (a1~b2))
如此,我们找到了解决问题的思路。首先我们尝试用递归来写。
解法一(递归):
两个字符串的相似的必备条件是含有相同的字符集。简单的做法是把两个字符串的字符排序后,然后比较是否相同。
加上这个检查就可以大大的减少递归次数。
代码如下:
1 class Solution { 2 public: 3 bool isScramble(string s1, string s2) { 4 int l1 = s1.length(); 5 int l2 = s2.length(); 6 if (l1 != l2) return false; 7 if (l1 == 1) return s1 == s2; 8 string st1 = s1, st2 = s2; 9 sort(st1.begin(), st1.end()); 10 sort(st2.begin(), st2.end()); 11 for (int i = 0; i < l1; ++i) { 12 if (st1[i] != st2[i]) { 13 return false; 14 } 15 } 16 string s11, s12, s21, s22; 17 bool res = false; 18 for (int i = 1; i < l1 && !res; ++i) { 19 s11 = s1.substr(0, i); 20 s12 = s1.substr(i, l1 - i); 21 s21 = s2.substr(0, i); 22 s22 = s2.substr(i, l1 - i); 23 res = isScramble(s11, s21) && isScramble(s12, s22); 24 if (!res) { 25 s21 = s2.substr(0, l1 - i); 26 s22 = s2.substr(l1 - i, i); 27 res = isScramble(s11, s22) && isScramble(s12, s21); 28 } 29 } 30 return res; 31 } 32 };
解法二(动态规划):
减少重复计算的方法就是动态规划。动态规划是一种神奇的算法技术,不亲自去写,是很难完全掌握动态规划的。
这里我使用了一个三维数组boolean result[len][len][len],其中第一维为子串的长度,第二维为s1的起始索引,第三维为s2的起始索引。
result[k][i][j]表示s1[i...i+k]是否可以由s2[j...j+k]变化得来。
1 public class Solution { 2 public boolean isScramble(String s1, String s2) { 3 int len = s1.length(); 4 if(len!=s2.length()){ 5 return false; 6 } 7 if(len==0){ 8 return true; 9 } 10 11 char[] c1 = s1.toCharArray(); 12 char[] c2 = s2.toCharArray(); 13 14 boolean[][][] result = new boolean[len][len][len]; 15 for(int i=0;i<len;++i){ 16 for(int j=0;j<len;++j){ 17 result[0][i][j] = (c1[i]==c2[j]); 18 } 19 } 20 21 for(int k=2;k<=len;++k){ 22 for(int i=len-k;i>=0;--i){ 23 for(int j=len-k;j>=0;--j){ 24 boolean r = false; 25 for(int m=1;m<k && !r;++m){ 26 r = (result[m-1][i][j] && result[k-m-1][i+m][j+m]) || (result[m-1][i][j+k-m] && result[k-m-1][i+m][j]); 27 } 28 result[k-1][i][j] = r; 29 } 30 } 31 } 32 33 return result[len-1][0][0]; 34 } 35 }