[Leetcode] Largest Rectangle in Histogram

Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.

Above is a histogram where width of each bar is 1, given height = [2,1,5,6,2,3].

 

The largest rectangle is shown in the shaded area, which has area = 10 unit.

For example,
Given height = [2,1,5,6,2,3],
return 10.

最笨的办法,暴力算,果然超时了!

 1 class Solution {
 2 public:
 3     int largestRectangleArea(vector<int> &height) {
 4         int minHeight;
 5         int maxArea = 0, area;
 6         for (int i = 0; i < height.size(); ++i) {
 7             minHeight = height[i];
 8             for (int j = i; j < height.size(); ++j) {
 9                 minHeight = (minHeight < height[j]) ? minHeight : height[j];
10                 area = minHeight * (j - i + 1);
11                 maxArea = (maxArea > area) ? maxArea : area;
12             }
13         }
14         return maxArea;
15     }
16 };

下面是重点, 可以通过两个栈来保存之前的信息,以减少比较次数,经典就是经典啊。我们要维护两个栈,要注意的是栈中的节点的高度一定是比当前节点小的,若发现height栈顶元素比当前元素大,则要将其出栈,同时计算面积。还有一点要注意的是处理完所有元素后若栈不为空,那么这些元素肯定是从idx延伸到最后的,还要计算其面积。

Actually, we can decrease the complexity by using stack to keep track of the height and start indexes. Compare the current height with previous one.

Case 1: current > previous (top of height stack)
Push current height and index as candidate rectangle start position.

Case 2: current = previous
Ignore.

Case 3: current < previous
Need keep popping out previous heights, and compute the candidate rectangle with height and width (current index - previous index). Push the height and index to stacks.

(Note: it is better use another different example to walk through the steps, and you will understand it better).

 

 1 class Solution {
 2 public:
 3     int largestRectangleArea(vector<int> &height) {
 4         int n = height.size();
 5         stack<int> stkHeight;
 6         stack<int> stkIdx;
 7         int maxArea = 0, tmpArea;
 8         int tmpHeight, tmpIdx;
 9         for (int i = 0; i < n; ++i) {
10             if (stkHeight.empty() || height[i] > stkHeight.top()) {
11                 stkHeight.push(height[i]);
12                 stkIdx.push(i);
13             }
14             else if (height[i] < stkHeight.top()) {
15                 //tmpIdx = 0;
16                 while (!stkHeight.empty() && height[i] <= stkHeight.top()) {
17                     tmpHeight = stkHeight.top();
18                     stkHeight.pop();
19                     tmpIdx = stkIdx.top();
20                     stkIdx.pop();
21                     tmpArea = tmpHeight * (i - tmpIdx);
22                     maxArea = (maxArea > tmpArea) ? maxArea : tmpArea;
23                 }
24                 stkHeight.push(height[i]);
25                 stkIdx.push(tmpIdx);
26             }
27         }
28         while (!stkHeight.empty()) {
29             tmpHeight = stkHeight.top();
30             stkHeight.pop();
31             tmpIdx = stkIdx.top();
32             stkIdx.pop();
33             tmpArea = tmpHeight * (n - tmpIdx);
34             maxArea = (maxArea > tmpArea) ? maxArea : tmpArea;
35         }
36         return maxArea;
37     }
38 };

 上面的代码太臃肿了,可以简化如下:

 1 class Solution {
 2 public:
 3     int largestRectangleArea(vector<int> &line) {
 4         if (line.size() < 1) return 0;
 5         stack<int> S;
 6         line.push_back(0);
 7         int maxArea = 0, tmpArea;
 8         for (int i = 0; i < line.size(); ++i) {
 9             if (S.empty() || line[i] > line[S.top()]) {
10                 S.push(i);
11             } else {
12                 int idx = S.top();
13                 S.pop();
14                 tmpArea = line[idx] * ((S.empty() ? i : i - S.top() - 1));
15                 maxArea = (maxArea > tmpArea) ? maxArea : tmpArea;
16                 --i;
17             }
18         }
19         return maxArea;
20     }
21 };

 

posted @ 2014-04-10 15:52  Eason Liu  阅读(793)  评论(0编辑  收藏  举报