LeetCode & Q53-Maximum Subarray-Easy & 动态规划思路分析

Array DP Divide and Conquer

Description:

Find the contiguous subarray within an array (containing at least one number) which has the largest sum.

For example, given the array [-2,1,-3,4,-1,2,1,-5,4],
the contiguous subarray [4,-1,2,1] has the largest sum = 6.

这题自己没做出来,对DP算法没有了解过,这次把DP算法简单学习了下,再看这道题就是最基础的对DP的应用(最优化子结构)

Best Solution:

public class Solution {
    public int maxSubArray(int[] nums) {
        int dp = nums[0];
        int max = nums[0];
        
        for (int i = 1; i < nums.length; i++) {
            dp = nums[i] + (dp > 0 ? dp : 0);
            max = Math.max(max, dp);
        }
        
        return max;
    }
}

显然,题目寻找的是nums[start]nums[end]的和最大,找出这段子数组即可。

在这道题的解法上,在for循环里很明显是个动态的、多阶段决策的思想。dp的确定,是一个递推思想,现在的dp值由上一个dp值所决定,由于是找最大和,故dp<0时,直接舍去dp当前值,并赋值nums[i],这实际上是改变start值。而max的确定,是在当前max和刚得出的dp取大值,相当于确定了end

另一种解法我认为也非常好理解,此处为代码:

public static int maxSubArray(int[] A) {
    int maxSoFar=A[0], maxEndingHere=A[0];
    for (int i=1;i<A.length;++i){
    	maxEndingHere= Math.max(maxEndingHere+A[i],A[i]);
    	maxSoFar=Math.max(maxSoFar, maxEndingHere);	
    }
    return maxSoFar;
}

算法详解原文:

algorithm that operates on arrays: it starts at the left end (element A[1]) and scans through to the right end (element A[n]), keeping track of the maximum sum subvector seen so far. The maximum is initially A[0]. Suppose we've solved the problem for A[1 .. i - 1]; how can we extend that to A[1 .. i]? The maximum
sum in the first I elements is either the maximum sum in the first i - 1 elements (which we'll call MaxSoFar), or it is that of a subvector that ends in position i (which we'll call MaxEndingHere).

MaxEndingHere is either A[i] plus the previous MaxEndingHere, or just A[i], whichever is larger.

笔者翻译如下:

算法作用于数组:从左边(元素A[1])开始,向右边(直到A[n])扫描,找到最大和。最大值初始化为A[0],假设我们现在已经计算到A[1 .. i - 1],怎么扩展到A[1 .. i]呢?前i个元素的最大和应该是前i-1个元素中已算出的最大和(我们称为MaxSoFar),或者是到当前位置i结束算出的新的和(称为MaxEndingHere)。其中,MaxEndingHereA[i]加之前的MaxEndingHereA[i]中较大的那一个。

可以看出两种算法思路一致,MaxEndingHere就相当于是dpMaxSoFar也就是求出的max

posted @ 2017-07-12 10:33  6002  阅读(149)  评论(0编辑  收藏  举报