Java NIO系列教程(七) selector原理 Epoll版的Selector
目录:
Reactor(反应堆)和Proactor(前摄器)
《I/O模型之三:两种高性能 I/O 设计模式 Reactor 和 Proactor》
《【转】第8章 前摄器(Proactor):用于为异步事件多路分离和分派处理器的对象行为模式》
《Java NIO系列教程(八)JDK AIO编程》-- java AIO的proactor模式
《Java NIO系列教程(七) selector原理 Epoll版的Selector》--java NIO的Reactor模式
jdk/src/solaris/classes/sun/nio/ch/DefaultSelectorProvider.java
public static SelectorProvider create() {
String osname = AccessController
.doPrivileged(new GetPropertyAction("os.name"));
if (osname.equals("SunOS"))
return createProvider("sun.nio.ch.DevPollSelectorProvider");
if (osname.equals("Linux"))
return createProvider("sun.nio.ch.EPollSelectorProvider");
return new sun.nio.ch.PollSelectorProvider();
}
可以看到,如果osname是Linux的话,实际上真正创建的是EPollSelectorProvider。因为在Java NIO(5): IO多路复用,这篇文章里我先介绍的是poll,所以我就把EpollSelectorProvider给绕开了。今天补一下这部分的内容。
我们继续看jdk/src/solaris/classes/sun/nio/ch/EPollSelectorProvider.java里的打开selector的定义:
public AbstractSelector openSelector() throws IOException {
return new EPollSelectorImpl(this);
}
OK,再去看EPollSelectorImpl的实现,这里面和昨天讲的PollSelectorImpl的实现十分相似,我就不再贴代码了。自己一定要打开源文件自己去看,我这里只是带着你浏览源码,充当向导,真正去学习去领悟还是要靠自己动手。
EPollSelectorImpl(SelectorProvider sp) throws IOException {
// 其他代码略,这里最重要的是初始化pollWrapper
try {
pollWrapper = new EPollArrayWrapper();
pollWrapper.initInterrupt(fd0, fd1);
fdToKey = new HashMap<>();
} catch (Throwable t) {
/* ... */
}
}
EpollSelectorImpl里最重要的方法是doSelect,这个方法与我们上节课所讲的方法大致相同,所以我就跳过这一步了,直接看pollWrapper.poll的实现。
int poll(long timeout) throws IOException {
updateRegistrations();
updated = epollWait(pollArrayAddress, NUM_EPOLLEVENTS, timeout, epfd);
for (int i=0; i<updated; i++) {
if (getDescriptor(i) == incomingInterruptFD) {
interruptedIndex = i;
interrupted = true;
break;
}
}
return updated;
}
而epollWait又是一个native方法,OK,我们去看它的实现。代码位于
jdk/src/solaris/native/sun/nio/ch/EPollArrayWrapper.c
JNIEXPORT jint JNICALL
Java_sun_nio_ch_EPollArrayWrapper_epollWait(JNIEnv *env, jobject this,
jlong address, jint numfds,
jlong timeout, jint epfd)
{
struct epoll_event *events = jlong_to_ptr(address);
int res;
if (timeout <= 0) { /* Indefinite or no wait */
RESTARTABLE(epoll_wait(epfd, events, numfds, timeout), res);
} else { /* Bounded wait; bounded restarts */
res = iepoll(epfd, events, numfds, timeout);
}
if (res < 0) {
JNU_ThrowIOExceptionWithLastError(env, "epoll_wait failed");
}
return res;
}
这里出现了一个新的东西:epoll,看JDK代码就先到这里。我来讲一下epoll是什么东西。
使用EPoll
上节课介绍的poll方法有一个非常大的缺陷。poll 函数的返回值是一个整数,得到了这个返回值以后,我们还是要逐个去检查,比如说,有一万个socket同时poll,返回值是3,我们还是只能去遍历这一万个socket,看看它们是否有IO动作。这就很低效了,于是,就有了epoll的改进,epoll可以直接通过“输出参数”(可以理解为C语言中的指针类型的参数),一个 epoll_event 数组,直接获得这三个socket,这就比较快了。
来具体讲一下,epoll的接口包括三个函数:
1. int epoll_create(int size);
创建一个epoll的句柄,size用来告诉内核这个监听的数目一共有多大。需要注意的是,当创建好epoll句柄后,它就是会占用一个fd值,在linux下如果查看/proc/进程id/fd/,是能够看到这个fd的,所以在使用完epoll后,必须调用close()关闭,否则可能导致fd被耗尽。
2. int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
epoll的事件注册函数。
第一个参数是epoll_create()的返回值,
第二个参数表示动作,用三个宏来表示:
EPOLL_CTL_ADD:注册新的fd到epfd中;
EPOLL_CTL_MOD:修改已经注册的fd的监听事件;
EPOLL_CTL_DEL:从epfd中删除一个fd;
第三个参数是需要监听的fd,就是我们的socket
第四个参数是告诉内核需要监听什么事,struct epoll_event结构如下:
typedef union epoll_data {
void *ptr;
int fd;
__uint32_t u32;
__uint64_t u64;
} epoll_data_t;
struct epoll_event {
__uint32_t events; /* Epoll events */
epoll_data_t data; /* User data variable */
};
events可以是以下几个宏的集合:(这是最常见的三种,其他很少用到,我就先不贴了)
EPOLLIN :表示对应的文件描述符可以读(包括对端SOCKET正常关闭);
EPOLLOUT:表示对应的文件描述符可以写;
EPOLLERR:表示对应的文件描述符发生错误;
3. int epoll_wait(int epfd, struct epoll_event * events, int maxevents, int timeout);
等待事件的产生。参数events用来从内核得到事件的集合,maxevents告之内核这个events有多大,这个 maxevents的值不能大于创建epoll_create()时的size,参数timeout是超时时间(毫秒,0会立即返回,-1是永久阻塞)。该函数返回需要处理的事件数目,如返回0表示已超时。
相比起poll,其实就多了一个 epdf 的结构和 epoll_ctl 而已。其他的主要逻辑都是一样的,所以 poll 的服务端例子,可以这样改写:
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <stdlib.h>
#include <assert.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <sys/epoll.h>
#define MAX_FD_NUM 1024
#define MAXLEN 1024
int buf_len = 0;
int main(int argc,char* argv[])
{
int i = 0;
printf("server start up\n");
if(argc <= 2)
{
printf("usage:%s ip port\n",basename(argv[0]));
return 1;
}
const char* ip = argv[1];
int port = atoi(argv[2]);
int server_sockfd = socket(PF_INET,SOCK_STREAM,0);
struct sockaddr_in server_addr;
bzero(&server_addr, sizeof(server_addr));
server_addr.sin_family = AF_INET;
inet_pton(AF_INET, ip, &server_addr.sin_addr);
server_addr.sin_port = htons(port);
int ret = bind(server_sockfd, (struct sockaddr*)&server_addr, sizeof(server_addr));
assert(ret != -1);
ret = listen(server_sockfd, MAX_FD_NUM - 1);
assert(ret != -1);
struct sockaddr_in client_addr;
socklen_t client_addr_len = sizeof(struct sockaddr_in);
// 创建一个 epfd,并且把 server_sockfd 注册到这个 epfd上。
int epfd = epoll_create(1024);
struct epoll_event ev,events[20];
ev.data.fd = server_sockfd;
ev.events = EPOLLIN;
epoll_ctl(epfd, EPOLL_CTL_ADD, server_sockfd, &ev);
int cur_fd_num =