【leetcode】Subsets (Medium) ☆

Given a set of distinct integers, S, return all possible subsets.

Note:

  • Elements in a subset must be in non-descending order.
  • The solution set must not contain duplicate subsets.

 

就是找出数字的全部子集。

 

我的思路:

设输入是 1  2  3  4

先把输入从小到大排序

长度 0 : []

长度 1 : 把输入数据从第一个数开始 1, 找上一个数字结果中开始数字比1大的解 没有 直接压入 [1]

                                                2,找上一个数字结果中开始数字比2大的解 没有 直接压入 [2]

                                                ...                          

             得到长度为1的解是 [1] [2] [3] [4]

长度 2 : 把输入数据从第一个数开始 1, 找上一个数字结果中开始数字比1大的解 有[2] [3] [4], 压入[1 2][1 3][1 4]

                                               2, 找上一个数字结果中开始数字比2大的解 有 [3] [4], 压入[2 3][2 4]

                                               ...

            得到长度为2的解是 [1 2][1 3][1 4][2 3][2 4][3 4]

长度 3 : 把输入数据从第一个数开始 1, 找上一个数字结果中开始数字比1大的解 有[2 3][2 4][3 4], 压入[1 2 3][1 2 4][1 3 4]

                                               2, 找上一个数字结果中开始数字比2大的解 有 [3 4], 压入[2 3 4]

            得到长度为3的解是 [1 2 3][1 2 4][1 3 4][2 3 4]

长度 4 : 把输入数据从第一个数开始 1, 找上一个数字结果中开始数字比1大的解 有[2 3 4], 压入[1 2 3 4]

                                               2, 找上一个数字结果中开始数字比2大的解 没有

            得到长度为4的解是 [1 2 3 4]

 

代码用了posfirst,poslast来表示上一个长度答案的范围。

class Solution {
public:
    vector<vector<int> > subsets(vector<int> &S) {
        sort(S.begin(), S.end());
        vector<vector<int>> ans;
        vector<int> partans;
        ans.push_back(partans); //空的

        int posfirst = 0; //上一个长度子集在ans中的起始下标
        int poslast = 0; //上一个长度子集在ans中的结束下标

        for(int len = 1; len <= S.size(); len++) //对长度循环
        {
            poslast = ans.size() - 1;
            for(int i = 0; i < S.size(); i++) //对起始数字循环
            {
                while(!ans[posfirst].empty() && S[i] >= ans[posfirst][0] && posfirst <= poslast) //跳过上一个长度答案中起始数字小于等于当前起始数字的解
                {
                    posfirst++;
                }
                for(int pos = posfirst;pos <= poslast; pos++) //获取当前的答案
                {
                    partans.push_back(S[i]); //压入当前数字
                    for(int j = 0; j < ans[pos].size(); j++) //压入上一个长度答案中的数字
                    {
                        partans.push_back(ans[pos][j]);
                    }
                    ans.push_back(partans);
                    partans.clear();
                }
            }
            posfirst = poslast + 1;
        }
        return ans;
    }
};


大神的解法:https://oj.leetcode.com/discuss/9213/my-solution-using-bit-manipulation

class Solution {
public:
    vector<vector<int> > subsets(vector<int> &S) {
        sort (S.begin(), S.end());
        int elem_num = S.size();
        int subset_num = pow (2, elem_num);
        vector<vector<int> > subset_set (subset_num, vector<int>());
        for (int i = 0; i < elem_num; i++)
            for (int j = 0; j < subset_num; j++)
                if ((j >> i) & 1)
                    subset_set[j].push_back (S[i]);
        return subset_set;
    }
};

解释如下:

 This is an amazing solution.Learnt a lot.Let me try to explain this to those who didn't get the logic.

 Number of subsets for {1 , 2 , 3 } = 2^3 .
 why ? 
case    possible outcomes for the set of subsets
  1   ->          Take or dont take = 2 
  2   ->          Take or dont take = 2  
  3   ->          Take or dont take = 2 

therefore , total = 2*2*2 = 2^3 = { { } , {1} , {2} , {3} , {1,2} , {1,3} , {2,3} , {1,2,3} }

Lets assign bits to each outcome  -> First bit to 1 , Second bit to 2 and third bit to 3
Take = 1
Dont take = 0

0) 0 0 0  -> Dont take 3 , Dont take 2 , Dont take 1 = { } 
1) 0 0 1  -> Dont take 3 , Dont take 2 ,   take 1       =  {1 } 
2) 0 1 0  -> Dont take 3 ,    take 2       , Dont take 1 = { 2 } 
3) 0 1 1  -> Dont take 3 ,    take 2       ,      take 1    = { 1 , 2 } 
4) 1 0 0  ->    take 3      , Dont take 2  , Dont take 1 = { 3 } 
5) 1 0 1  ->    take 3      , Dont take 2  ,     take 1     = { 1 , 3 } 
6) 1 1 0  ->    take 3      ,    take 2       , Dont take 1 = { 2 , 3 } 
7) 1 1 1  ->    take 3     ,      take 2     ,      take 1     = { 1 , 2 , 3 } 

In the above logic ,Insert S[i] only if (j>>i)&1 ==true   { j E { 0,1,2,3,4,5,6,7 }   i = ith element in the input array }

element 1 is inserted only into those places where 1st bit of j is 1 
   if( j >> 0 &1 )  ==> for above above eg. this is true for sl.no.( j )= 1 , 3 , 5 , 7 

element 2 is inserted only into those places where 2nd bit of j is 1 
   if( j >> 1 &1 )  == for above above eg. this is true for sl.no.( j ) = 2 , 3 , 6 , 7

element 3 is inserted only into those places where 3rd bit of j is 1 
   if( j >> 2 & 1 )  == for above above eg. this is true for sl.no.( j ) = 4 , 5 , 6 , 7 

Time complexity : O(n*2^n) , for every input element loop traverses the whole solution set length i.e. 2^n

 

posted @ 2014-11-23 16:58  匡子语  阅读(230)  评论(0编辑  收藏  举报