【数据结构】DFS求有向图的强连通分量
用十字链表结构写的,根据数据结构书上的描述和自己的理解实现。但理解的不透彻,所以不知道有没有错误。但实验了几个都ok.
#include <iostream> #include <vector> using namespace std; //有向图十字链表表示 #define MAX_VERTEX_NUM 20 typedef struct ArcBox{ int tailvex, headvex; //该弧尾和头顶点的位置 struct ArcBox *hlink, *tlink; //分别指向弧头相同和弧尾相同的弧的链域 }ArcBox; typedef struct VexNode{ int data; ArcBox *firstin, *firstout;//分别指向该顶点的第一条入弧和出弧 }VexNode; typedef struct{ VexNode xlist[MAX_VERTEX_NUM]; //表头向量 int vexnum, arcnum; //有向图的顶点数和弧数 }OLGraph; //定位顶点在xlist中的位置 int LocateVex(OLGraph G, int data) { for(int i = 0; i < G.vexnum; i++) { if(G.xlist[i].data == data) { return i; } } cout << "error the vertex "<< data << " is not in the list"<<endl; return -1; } //有向图十字链表创建 void CreateDG(OLGraph &G) { cout << "please input the number of vertex, the number of arc:"; cin >> G.vexnum >> G.arcnum; for(int i = 0; i < G.vexnum; i++) { cout << "please input vertex data:"; cin >> G.xlist[i].data; G.xlist[i].firstin = NULL; //初始化指针 G.xlist[i].firstout = NULL; } for(int k = 0; k < G.arcnum; k++) { int v1, v2; //弧的尾和头 cout << "please input the tail and head vertex of each tail:"; cin >> v1 >> v2; int i = LocateVex(G, v1); int j = LocateVex(G, v2); ArcBox * p = new ArcBox; p->headvex = j; p->tailvex = i; p->hlink = G.xlist[j].firstin; p->tlink = G.xlist[i].firstout; G.xlist[j].firstin = p; G.xlist[i].firstout = p; } } //单向深度优先搜索 //输入: 图G, 开始遍历点v, 遍历标志visited, 遍历方向dir 0 表示从尾向头遍历 1表示从头到尾遍历, vecor存放跳出遍历的顺序 void DFS(OLGraph G, int v, int * visited, int dir, vector<int> * vec) { visited[v] = 1; (*vec).push_back(v); if(dir == 0) //从尾向头遍历 { ArcBox * w = G.xlist[v].firstout; while(w != NULL ) //注意 这里的while { if(visited[w->headvex] == 1) { w = w->tlink; } else//未访问过该点 递归遍历该点 { DFS(G, w->headvex, visited, dir, vec); w = w->tlink; } } } else //从头向尾遍历 { ArcBox * w = G.xlist[v].firstin; while(w != NULL)//查找下一个遍历点 { if((visited[w->tailvex]) == 1) { w = w->hlink; } else//未访问过该点 递归遍历该点 { DFS(G, w->tailvex, visited, dir, vec); w = w->hlink; } } } } //查找有向图强连通分量 vector<vector<int>> FindConnectedPart(OLGraph G) { vector<vector<int>> ConnectedPart; vector<vector<int>> finished; int* visited = new int[G.vexnum]; memset(visited, 0, G.vexnum * sizeof(int)); //初始化为全部没有访问过 //从尾向头遍历 for(int v = 0; v < G.vexnum; v++) { if(visited[v] == 0) //没有被访问过 { vector<int> vec; DFS(G, v, visited, 0, &vec); finished.push_back(vec); } } //从头向尾遍历 memset(visited, 0, G.vexnum * sizeof(int)); vector<int>::iterator it; vector<vector<int>>::iterator it2; int* find = new int[G.vexnum]; //find标识顶点实际上是否被查找过 for(int i = 0; i < G.vexnum; i++) { find[i] = 0; visited[i] = 1; } for(it2 = finished.begin(); it2 < finished.end(); it2++) { //已经遍历过的部分visited不变,即都是1; find[i]= 0的表示本次遍历时不遍历结点i,为了跳过i,设它们的visited[i]=1; 但实际上,它们还没有被访问到 //比如从尾到头遍历时得到两个分量 (1,2,3,4)(5) //那么为了找到重连通分量,从头到尾遍历4,3,2,1时不应该经过5 即可能从头到尾遍历时的分量是(1 2 3 5)(4) // 但实际上重连通分量为(1,2,3)(4)(5)三个 for(it = it2->begin(); it < it2->end(); it++) { visited[*it] = 0; //只把本次遍历考虑到的顶点的visited设为0,其他为1,就不会加人遍历了 find[*it] = 1; } for(it = it2->begin(); it < it2->end(); it++) { if(visited[*it] == 0) //没有被访问过 { vector<int> vec; DFS(G, *it, visited, 1, &vec); ConnectedPart.push_back(vec); } } } //输出重连通分量 int n = 0; cout << "重连通分量有:" << endl; for(it2 = ConnectedPart.begin(); it2 < ConnectedPart.end(); it2++) { cout << ++n << ":"; for(it = it2->begin(); it < it2->end(); it++) { cout << G.xlist[*it].data << " "; } cout<< endl; } delete [] visited; delete [] find; return ConnectedPart; } int main() { OLGraph G; CreateDG(G); FindConnectedPart(G); return 0; }
http://blog.csdn.net/wsniyufang/article/details/6604458里面有将更好的算法。我还没看。