对操作系统内存管理的模拟(应用)
今天来续写,觉得昨天那种安排不合理,于是将原理与应用分两篇来写,不至于让大家和我看的有些烦。
温故而知新可以为师矣,如果不能为师,给自己当老师也不错哦。好了,写一个模拟内存管理的程序吧,老师说有原理,也要有具体实现,这是提升分析问题的一种途径。下面写写程序,并进行解说,这个程序我当时也完善了一下,其实这个程序是老师给了框架,我们实现了其中的内容。
先写一些宏定义和全局变量
1 #define PROCESS_NAME_LEN 32 //进程名称的最大长度
2 #define MIN_SLICE 10 //最小碎片的大小
3 #define DEFAULT_MEM_SIZE 1024 //默认内存的大小
4 #define DEFAULT_MEM_START 0 //默认内存的起始位置
5
6 // 内存分配算法
7 #define MA_FF 1 //首次适应算法,地址递增
8 #define MA_BF 2 //最佳适应算法,空闲区容量从大到小
9 #define MA_WF 3 //循环首次适应算法,
10
11 int mem_size=DEFAULT_MEM_SIZE; //内存大小
12 int ma_algorithm = MA_FF; //当前分配算法
13 static int pid = 0; //初始pid
14 int flag = 0; //设置内存大小标志
哦,以前写的时候就有注释,所以碰到一些注释不明确的我在解释解释。
下面是几个重要的数据结构,看过linux内核代码的童鞋对操作系统的数据结构应该有所了解,其实也就是比我们平时用的更深入、更精巧而已,基本原理还是一样,有些只是我们没那么用过,我这个还是一般的用法。
1 //描述每一个空闲块的数据结构
2 struct free_block_type{
3 int size;
4 int start_addr;
5 struct free_block_type *next;
6 };
7
8 //指向内存中空闲块链表的首指针
9 struct free_block_type *free_block;
10
11 /*每个进程分配到的内存块的描述*/
12 struct allocated_block{
13 int pid;
14 int size;
15 int start_addr;
16 char process_name[PROCESS_NAME_LEN];
17 struct allocated_block *next;
18 };
19
20 //进程分配内存块链表的首指针
21 struct allocated_block *allocated_block_head = NULL;
linux内核也是这样命名的,基本都能见名知意,我就不费话了。
1 /*初始化空闲块,默认为一块,可以指定大小及起始地址*/
2 struct free_block_type* init_free_block(int mem_size){
3 struct free_block_type *fb;
4
5 fb=(struct free_block_type *)malloc(sizeof(struct free_block_type));
6 if(fb==NULL){
7 printf("No mem\n");
8 return NULL;
9 }
10 fb->size = mem_size;
11 fb->start_addr = DEFAULT_MEM_START;
12 fb->next = NULL;
13 printf("init_free_block fished\n\n");
14 return fb;
15 }
写过单片机或者ARM程序的同学可能对初始化有比较深刻的理解,因为在做一些事情之前,总是要做一些准备工作,举个最简答的例子,吃饭之前要做什么准备工作,洗手?错了,我说的不是这个。吃饭你得有筷子、碗和饭菜,这些就是初始化工作,接下来你才能吃饭呀。
1 //显示菜单
2 void display_menu(){
3 printf("\n");
4 printf("1 - Set memory size (default=%d)\n", DEFAULT_MEM_SIZE);
5 printf("2 - Select memory allocation algorithm\n");
6 printf("3 - New process \n");
7 printf("4 - Terminate a process \n");
8 printf("5 - Display memory usage \n");
9 printf("0 - Exit\n");
10 }
这个相当于菜单,就这样。
1 //设置内存的大小
2 int set_mem_size(){
3 int size;
4 if(flag!=0){ //防止重复设置
5 printf("Cannot set memory size again\n");
6 return 0;
7 }
8 printf("Total memory size =");
9 scanf("%d", &size);
10 if(size>0) {
11 mem_size = size;
12 free_block->size = mem_size;
13 }
14 flag=1;
15 return 1;
16 }
这个其实也相当于初始化,只不过你有了选择权。
1 // 设置当前的分配算法
2 void set_algorithm(){
3 int algorithm;
4 printf("\t1 - First Fit\n"); //首次适应算法,简称FF
5 printf("\t2 - Best Fit \n"); //最佳适应算法
6 printf("\t3 - Worst Fit \n"); //最差适应算法
7 scanf("%d", &algorithm);
8 if(algorithm>=1 && algorithm <=3)
9 ma_algorithm=algorithm;
10
11 rearrange(ma_algorithm); //按指定算法重新排列空闲区链表
12 }
13
14 //按指定的算法整理内存空闲块链表
15 void rearrange(int algorithm){
16 switch(algorithm){
17 case MA_FF: rearrange_FF(); break;
18 case MA_BF: rearrange_BF(); break;
19 case MA_WF: rearrange_WF(); break;
20 }
21 }
22 //按FF算法重新整理内存空闲块链表
23 void rearrange_FF(){
24
25 struct free_block_type *position, *min, *current;
26 int size;
27 int start_addr;
28 printf("Rearrange free blocks for FF \n\n");
29 position = free_block;
30
31 //空闲块按地址顺序进行简单选择排序
32 while (position != NULL) {
33 min = position;
34 current = position->next;
35
36 while(current != NULL){
37 if( current->start_addr < min->start_addr) {
38 min = current;
39 }
40 current = current->next;
41 }
42
43 size = position->size;
44 position->size = min->size;
45 min->size = size;
46
47 start_addr = position->start_addr;
48 position->start_addr = min->start_addr;
49 min->start_addr = start_addr;
50
51 position = position->next;
52 }
53 }
54
55 //按BF算法重新整理内存空闲块链表
56 void rearrange_BF(){
57
58 struct free_block_type *position, *min, *current;
59 int size;
60 int start_addr;
61 printf("Rearrange free blocks for BF\n\n");
62 position = free_block;
63
64 //空闲块按由小到大进行简单选择排序
65 while (position != NULL) { min = position;
66 current = position->next;
67
68 while(current != NULL){
69 if( current->size < min->size) {
70 min = current;
71 }
72 current = current->next;
73 }
74
75 size = position->size;
76 position->size = min->size;
77 min->size = size;
78
79 start_addr = position->start_addr;
80 position->start_addr = min->start_addr;
81 min->start_addr = start_addr;
82
83 position = position->next;
84 }
85 }
86
87
88 //按WF算法重新整理内存空闲块链表
89 void rearrange_WF(){
90 struct free_block_type *position, *min, *current;
91 int size;
92 int start_addr;
93 printf("Rearrange free blocks for WF \n\n");
94 position = free_block;
95
96 //空闲块按由大到小进行简单选择排序
97 while (position != NULL) { min = position;
98 current = position->next;
99
100 while(current != NULL){
101 if( current->size > min->size) {
102 min = current;
103 }
104 current = current->next;
105 }
106
107 size = position->size;
108 position->size = min->size;
109 min->size = size;
110
111 start_addr = position->start_addr;
112 position->start_addr = min->start_addr;
113 min->start_addr = start_addr;
114
115 position = position->next;
116 }
117 }
这段是按三种排序算法进行内存整理,如果你了解这三种排序算法,就没必要看这些了,我觉得只要对算法核心思想理解了,写基本是没问题的,最大的差异可能就是效率和风格。
1 //创建新的进程,主要是获取内存的申请数量
2 int new_process(){
3 struct allocated_block *ab;
4 int size;
5 int ret;
6 ab=(struct allocated_block *)malloc(sizeof(struct allocated_block));
7 if(!ab) exit(-5);
8 ab->next = NULL;
9 pid++;
10 sprintf(ab->process_name, "PROCESS-%02d", pid); //格式化字符串复制,将引号中数据复制到ab->process_name字符数组中去
11 ab->pid = pid;
12
13 printf("Memory for %s:", ab->process_name);
14 scanf("%d", &size);
15 if(size>0) ab->size=size;
16 ret = allocate_mem(ab); // 从空闲区分配内存,ret==1表示分配ok
17 //如果此时allocated_block_head尚未赋值,则赋值
18 if((ret==1) &&(allocated_block_head == NULL)){
19 allocated_block_head=ab;
20 printf("new_process was created\n\n");
21 return 1;
22 }
23 //分配成功,将该已分配块的描述插入已分配链表
24 else if (ret==1) {
25 ab->next=allocated_block_head;
26 allocated_block_head=ab;
27 printf("new_process was created\n\n");
28 return 2;
29 }
30 else if(ret==-1){ //分配不成功
31 printf("Allocation fail\n");
32 free(ab);
33 return -1;
34 }
35 return 3;
36 }
这部分主要是创建线程并作一些初始化工作。
1 //分配内存模块
2 int allocate_mem(struct allocated_block *ab){
3 struct free_block_type *fbt, *pre;
4 int request_size=ab->size;
5 int sum_size = 0;
6 fbt = pre = free_block;
7
8 while(fbt!=NULL){
9
10 if( (fbt->size - request_size) >= MIN_SLICE ){ //分配后空闲空间足够大,则分割
11 ab->start_addr = fbt->start_addr;
12 fbt->size = fbt->size - request_size;
13 fbt->start_addr = fbt->start_addr + request_size;
14 rearrange(ma_algorithm);
15 return 1;
16 }
17 else if( (fbt->size > request_size) && (fbt->size - request_size < MIN_SLICE) ){ //分割后空闲区成为小碎片,一起分配
18 ab->start_addr = fbt->start_addr;
19 ab->size = fbt->size;
20 if(fbt == free_block) {
21 free_block = fbt->next;
22 free(fbt);
23 }
24 else{
25 pre->next = fbt->next;
26 free(fbt);
27 }
28 rearrange(ma_algorithm);
29 return 1;
30 }
31
32 sum_size += fbt->size;
33 pre = fbt;
34 fbt = fbt->next;
35 }
36 if(sum_size < request_size)
37 return -1;
38 else {
39 compress(ab,request_size,sum_size);
40 return 1;
41 }
42 }
这部分主要是如何去分配内存,下面的代码是在碰到还有内存时,但这些内存大小都不足以满足所要申请的大小,我们就要进行碎片整理,如果整理后还不能满足要求,我们只能对程序说声对不起。
1 //**********紧缩后分配
2 void compress(struct allocated_block *ab, int request_size, int sum_size){
3
4 struct allocated_block *ab1, *ab2;
5 struct free_block_type *fb1, *fb2;
6 ab1 = allocated_block_head;
7 ab1->start_addr = 0;
8 ab2 = ab1->next;
9
10 while(ab2 != NULL){
11 ab2->start_addr = ab1->start_addr + ab1->size;
12 ab1 = ab2;
13 ab2 = ab2->next;
14 }
15 printf("free block was compressed\n\n");
16 ab->start_addr = ab1->start_addr + ab1->size;
17
18 fb1 = free_block->next; //紧缩后只有一个空闲块,无需排序
19 while(fb1 != NULL){ //其他空闲块释放
20 fb2 = fb1->next;
21 free(fb1);
22 fb1 = fb2;
23 }
24 printf("free block was set free\n\n");
25 free_block->start_addr = ab->start_addr + ab->size;
26 free_block->size = sum_size - request_size;
27 free_block->next = NULL;
28
29 if( (sum_size >= request_size) && (sum_size - request_size < MIN_SLICE) ) {
30 ab->size = sum_size;
31 free_block->start_addr = -1;
32 free_block->size = 0;
33 }
34 }
上面就是碎片整理的代码。
下面介绍杀死一个进程并对其内存空间的释放与回收:
1 //删除进程,归还分配的存储空间,并删除描述该进程内存分配的节点
2 void kill_process(){
3 struct allocated_block *ab;
4 int pid;
5 printf("Kill Process, pid=");
6 scanf("%d", &pid);
7 ab=find_process(pid);
8 if(ab != NULL){
9 free_mem(ab); //释放ab所表示的分配区
10 dispose(ab); //释放ab数据结构节点
11 printf("process %2d was killed\n", pid);
12 }
13 else printf("no this process %2d\n", pid);
14 }
15
16 struct allocated_block * find_process(int pid){
17 struct allocated_block * ab;
18 ab = allocated_block_head;
19
20 while(ab != NULL){
21 if(ab->pid == pid)
22 return ab;
23 ab = ab->next;
24 }
25
26 return ab;
27
28 }
29
30 //将ab所表示的已分配区归还,并进行可能的合并
31 int free_mem(struct allocated_block *ab){
32 int algorithm = ma_algorithm;
33 struct free_block_type *fbt, *pre;
34
35 fbt=(struct free_block_type*) malloc(sizeof(struct free_block_type));
36 if(!fbt) {
37 printf("malloc free_block_type error\n");
38 return -1;
39 }
40 fbt->start_addr = ab->start_addr; //保存结点信息并将释放结点插入到空闲队列开头
41 fbt->size = ab->size;
42 fbt->next = free_block;
43 free_block = fbt;
44
45 rearrange_FF(); //按地址有序排列
46 printf("free block was sorted according to address\n");
47
48 pre = free_block; //合并相邻空闲分区
49 fbt = free_block->next;
50 while(fbt != NULL){
51 if(pre->start_addr + pre->size == fbt->start_addr)
52 {
53 pre->size = pre->size + fbt->size;
54 pre->next = fbt->next;
55 free(fbt);
56 fbt = pre->next;
57 }
58 else {
59 pre = fbt->next;
60 fbt = fbt->next;
61 }
62 }
63 printf("free block combined\n\n");
64 rearrange(ma_algorithm); //按当前算法重新排序
65
66 return 1;
67
68 }
69
70 //释放ab数据结构节点
71 int dispose(struct allocated_block *free_ab){
72 struct allocated_block *pre, *ab;
73
74 if(free_ab == allocated_block_head) { //如果要释放第一个节点
75 allocated_block_head = allocated_block_head->next;
76 free(free_ab);
77 printf("Node ab has been free\n");
78 return 1;
79 }
80
81 pre = allocated_block_head; //释放的是其他节点
82 ab = allocated_block_head->next;
83
84 while(ab != free_ab){
85 pre = ab;
86 ab = ab->next;
87 }
88 pre->next = ab->next;
89 free(ab);
90 return 2;
91 }
当然这只一个对内存管理的模拟,如果在运行这个程序时,我们没释放所有内存空间,我们就要在程序结束之前,自动对其释放,要不就会造成内存泄露。
1 void do_exit(){ //释放空间
2 struct free_block_type *fb1, *fb2;
3 struct allocated_block *ab1, *ab2;
4
5 fb1 = free_block;
6 while(fb1 !=NULL){
7 fb2 = fb1->next;
8 free(fb1);
9 fb1 = fb2;
10 }
11 printf("free_block_type free\n\n");
12
13 ab1 = allocated_block_head;
14 while (ab1 != NULL){
15 ab2 = ab1->next;
16 free(ab1);
17 ab1 = ab2;
18 }
19 printf("allocated_block free\n\n");
20 }
好了,再来一个最原始的显示内存使用情况的界面吧。
1 // 显示当前内存的使用情况,包括空闲区的情况和已经分配的情况
2 int display_mem_usage(){
3 struct free_block_type *fbt=free_block;
4 struct allocated_block *ab=allocated_block_head;
5
6 //if(fbt==NULL) return(-1);
7
8 printf("----------------------------------------------------------\n");
9
10 // 显示空闲区
11 printf("Free Memory:\n");
12 printf("%20s %20s\n", " start_addr", " size");
13 while(fbt!=NULL){
14 printf("%20d %20d\n", fbt->start_addr, fbt->size);
15 fbt=fbt->next;
16 }
17
18 // 显示已分配区
19 printf("\nUsed Memory:\n");
20 printf("%10s %20s %10s %10s\n", "PID", "ProcessName", "start_addr", " size");
21
22 while(ab!=NULL){
23 printf("%10d %20s %10d %10d\n", ab->pid, ab->process_name, ab->start_addr, ab->size);
24 ab=ab->next;
25 }
26 printf("----------------------------------------------------------\n");
27
28 return 0;
29 }
30
主函数是最简单的,也相当于一个菜单。
1 main(){
2 char choice;
3 pid=0;
4 free_block = init_free_block(mem_size); //初始化空闲区
5 for(;;){
6 display_menu(); //显示菜单
7 fflush(stdin);
8 choice=getchar(); //获取用户输入
9
10 switch(choice){
11 case '1' : set_mem_size(); break; //设置内存大小
12 case '2' : set_algorithm();flag=1; break; //设置分配算法
13 case '3' : new_process(); flag=1; break; //创建新进程
14 case '4' : kill_process(); flag=1; break; //删除进程
15 case '5' : display_mem_usage(); flag=1; break; //显示内存使用
16 case '0' : do_exit(); exit(0); //释放链表并退出
17
18 default: break;
19 }
20
21 }
22 }
结束了,太长了是不,慢慢看,刚开始我也是慢慢理解了才写的,如果哪块有更好的解决办法,请各位多多指教,我会虚心接受,期待你的意见或建议。今天天气不错,艳阳高照,在初冬时节,有这样的天气,感觉很舒适,希望这样的天气保持到星期天。