Elasticsearch 统计代码例子
aggs
avg 平均数
最近15分钟的平均访问时间,upstream_time_ms是每次访问时间,单位毫秒
{
"query": {
"filtered": {
"filter": {
"range": {
"@timestamp": {
"gt": "now-15m",
"lt": "now"
}
}
}
}
},
"aggs": {
"execute_time": {
"avg": {
"field": "upstream_time_ms"
}
}
}
}
//当然你也可以直接将过滤器写在aggs里面
{
"size": 0,
"aggs": {
"filtered_aggs": {
"filter": {
"range": {
"@timestamp": {
"gt": "now-15m",
"lt": "now"
}
}
},
"aggs": {
"execute_time": {
"avg": {
"field": "upstream_time_ms"
}
}
}
}
}
}
cardinality 基数,比如计算uv
你可能注意到了size:0,如果你只需要统计数据,不要数据本身,就设置它,这不是我投机取巧,官方文档也是这么干的。
{
"size": 0,
"aggs": {
"filtered_aggs": {
"filter": {
"range": {
"@timestamp": {
"gt": "now-15m",
"lt": "now"
}
}
},
"aggs": {
"ipv": {
"cardinality": {
"field": "ip"
}
}
}
}
}
}
percentiles 基于百分比统计
最近15分钟,99.9的请求的执行时间不超过多少
{
"size": 0,
"query": {
"filtered": {
"filter": {
"range": {
"@timestamp": {
"gt": "now-15m",
"lt": "now"
}
}
}
}
},
"aggs": {
"execute_time": {
"percentiles": {
"field": "upstream_time_ms",
"percents": [
90,
95,
99.9
]
}
}
}
}
//返回值,0.1%的请求超过了159ms
{
"took": 620,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 679400,
"max_score": 0,
"hits": []
},
"aggregations": {
"execute_time": {
"values": {
"90.0": 24.727003484320534,
"95.0": 72.6200981699678,
"99.9": 159.01065773524886 //99.9的数据落在159以内,是系统计算出来159
}
}
}
}
percentile_ranks 指定一个范围,有多少数据落在这里
{
"size": 0,
"query": {
"filtered": {
"filter": {
"range": {
"@timestamp": {
"gt": "now-15m",
"lt": "now"
}
}
}
}
},
"aggs": {
"execute_time": {
"percentile_ranks": {
"field": "upstream_time_ms",
"values": [
50,
160
]
}
}
}
}
//返回值
{
"took": 666,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 681014,
"max_score": 0,
"hits": []
},
"aggregations": {
"execute_time": {
"values": {
"50.0": 94.14716385885366,
"160.0": 99.91130872493076 //99.9的数据落在了160以内,这次,160是我指定的,系统计算出99.9
}
}
}
}
统计最近15分钟,不同的链接请求时间大小
{
"size": 0,
"query": {
"filtered": {
"filter": {
"range": {
"@timestamp": {
"gt": "now-15m",
"lt": "now"
}
}
}
}
},
"aggs": {
"execute_time": {
"terms": {
"field": "uri"
},
"aggs": {
"avg_time": {
"avg": {
"field": "upstream_time_ms"
}
}
}
}
}
}
//返回,看起来url1 比 url2慢一点(avg_time),不过url1的请求量比较大 (doc_count)
{
"took": 1655,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 710802,
"max_score": 0,
"hits": []
},
"aggregations": {
"execute_time": {
"doc_count_error_upper_bound": 10,
"sum_other_doc_count": 347175,
"buckets": [
{
"key": "/url1",
"doc_count": 362688,
"avg_time": {
"value": 6.601660380271749
}
},
{
"key": "/url2",
"doc_count": 939,
"avg_time": {
"value": 5.313099041533547
}
}
]
}
}
}
找出url响应最慢的前2名
{
"size": 0,
"query": {
"filtered": {
"filter": {
"range": {
"@timestamp": {
"gt": "now-15m",
"lt": "now"
}
}
}
}
},
"aggs": {
"execute_time": {
"terms": {
"size": 2,
"field": "uri",
"order": {
"avg_time": "desc"
}
},
"aggs": {
"avg_time": {
"avg": {
"field": "upstream_time_ms"
}
}
}
}
}
}
//返回值
{
"took": 1622,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 748712,
"max_score": 0,
"hits": []
},
"aggregations": {
"execute_time": {
"doc_count_error_upper_bound": -1,
"sum_other_doc_count": 748710,
"buckets": [
{
"key": "url_shit",
"doc_count": 123,
"avg_time": {
"value": 8884
}
},
{
"key": "url_shit2",
"doc_count": 456,
"avg_time": {
"value": 8588
}
}
]
}
}
}
value_count 文档数量
相当于
select count(*) from table group by uri,为了达到这个目的,只需要把上文中,avg 换成value_count。不过avg的时候,结果中的doc_count其实达到了同样效果。
怎么取数据画个图?比如:最近2分钟,每20秒的时间窗口中,平均响应时间是多少
{
"size": 0,
"query": {
"filtered": {
"filter": {
"range": {
"@timestamp": {
"gt": "now-2m",
"lt": "now"
}
}
}
}
},
"aggs": {
"execute_time": {
"date_histogram": {
"field": "@timestamp",
"interval": "20s"
},
"aggs": {
"avg_time": {
"avg": {
"field": "upstream_time_ms"
}
}
}
}
}
}
pv 分时统计图(每小时一统计)
周期大小对性能影响不大
{
"size":0,
"fields":false,
"aggs": {
"execute_time": {
"date_histogram": {
"field": "@timestamp",
"interval": "1h"
}
}
}
}