Caffe学习系列(14):初识数据可视化
首先将caffe的根目录作为当前目录,然后加载caffe程序自带的小猫图片,并显示。
图片大小为360x480,三通道
In [1]:
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import caffe
caffe_root='/home/xxx/caffe/'
import os,sys
os.chdir(caffe_root)
sys.path.insert(0,caffe_root+'python')
im = caffe.io.load_image('examples/images/cat.jpg')
print im.shape
plt.imshow(im)
plt.axis('off')
Out[1]:
打开examples/net_surgery/conv.prototxt文件,修改两个地方
一是将input_shape由原来的是(1,1,100,100)修改为(1,3,100,100),即由单通道灰度图变为三通道彩色图。
二是将过滤器个数(num_output)由3修改为16,多增加一些filter, 当然保持原来的数不变也行。
其它地方不变,修改后的prototxt如下:只有一个卷积层
In [2]:
! cat examples/net_surgery/conv.prototxt
将图片数据加载到blobs,但反过来,我们也可以反过来从blob中提取出原始数据,并进行显示。
显示的时候要注意各维的顺序,如blobs的顺序是(1,3,360,480),从前往后分别表示1张图片,3三个通道,
图片大小为360x480,需要调用transpose改变为(360,480,3)才能正常显示。
其中用data[0]表示第一张图片,下标从0开始,此例只有一张图片,因此只能是data[0].
分别用data[0,0],data[0,1]和data[0,2]表示该图片的三个通道。
In [3]:
net = caffe.Net('examples/net_surgery/conv.prototxt', caffe.TEST)
im_input=im[np.newaxis,:,:,:].transpose(0,3,1,2)
print "data-blobs:",im_input.shape
net.blobs['data'].reshape(*im_input.shape)
net.blobs['data'].data[...] = im_input
plt.imshow(net.blobs['data'].data[0].transpose(1,2,0))
plt.axis('off')
Out[3]:
编写一个show_data函数来显示数据
In [4]:
plt.rcParams['image.cmap'] = 'gray'
def show_data(data,head,padsize=1, padval=0):
data -= data.min()
data /= data.max()
# force the number of filters to be square
n = int(np.ceil(np.sqrt(data.shape[0])))
padding = ((0, n ** 2 - data.shape[0]), (0, padsize), (0, padsize)) + ((0, 0),) * (data.ndim - 3)
data = np.pad(data, padding, mode='constant', constant_values=(padval, padval))
# tile the filters into an image
data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1)))
data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:])
plt.figure()
plt.title(head)
plt.imshow(data)
plt.axis('off')
从blobs数据中将原始图片提取出来,并分别显示不同的通道图
In [5]:
print "data-blobs:",net.blobs['data'].data.shape
show_data(net.blobs['data'].data[0],'origin images')
调用forward()执行卷积操作,blobs数据发生改变。由原来的(1,3,360,480)变为(1,16,356,476)。
并初始化生成了相应的权值,权值数据为(16,3,5,5)。
最后调用两次show_data来分别显示权值和卷积过滤后的16通道图片。
In [6]:
net.forward()
print "data-blobs:",net.blobs['data'].data.shape
print "conv-blobs:",net.blobs['conv'].data.shape
print "weight-blobs:",net.params['conv'][0span>].data.shape
show_data(net.params['conv'][0].data[:,0],'conv weights(filter)')
show_data(net.blobs['conv'].data[0],'post-conv images')
In [ ]: