PyTorch中的backward [转]

转自:https://sherlockliao.github.io/2017/07/10/backward/

backward只能被应用在一个标量上,也就是一个一维tensor,或者传入跟变量相关的梯度。

特别注意Variable里面默认的参数requires_grad=False,所以这里我们要重新传入requires_grad=True让它成为一个叶子节点

对其求偏导:

 1 import torch as t
 2 from torch.autograd import Variable as v
 3 
 4 # simple gradient
 5 a = v(t.FloatTensor([2, 3]), requires_grad=True)
 6 b = a + 3
 7 c = b * b * 3
 8 out = c.mean()
 9 out.backward()
10 print('*'*10)
11 print('=====simple gradient======')
12 print('input')
13 print(a.data)
14 print('compute result is')
15 print(out.data[0])
16 print('input gradients are')
17 print(a.grad.data)

 

下面研究一下如何能够对非标量的情况下使用backward。backward里传入的参数是每次求导的一个系数。

首先定义好输入m=(x1,x2)=(2,3),然后我们做的操作就是n=,这样我们就定义好了一个向量输出,结果第一项只和x1有关,结果第二项只和x2有关,那么求解这个梯度,

 1 # backward on non-scalar output
 2 m = v(t.FloatTensor([[2, 3]]), requires_grad=True)
 3 n = v(t.zeros(1, 2))
 4 n[0, 0] = m[0, 0] ** 2
 5 n[0, 1] = m[0, 1] ** 3
 6 n.backward(t.FloatTensor([[1, 1]]))
 7 print('*'*10)
 8 print('=====non scalar output======')
 9 print('input')
10 print(m.data)
11 print('input gradients are')
12 print(m.grad.data)

 

jacobian矩阵

对其求导:

k.backward(parameters)接受的参数parameters必须要和k的大小一模一样,然后作为k的系数传回去,backward里传入的参数是每次求导的一个系数。

# jacobian
j = t.zeros(2 ,2)
k = v(t.zeros(1, 2))
m.grad.data.zero_()
k[0, 0] = m[0, 0] ** 2 + 3 * m[0 ,1]
k[0, 1] = m[0, 1] ** 2 + 2 * m[0, 0]
# [1, 0] dk0/dm0, dk1/dm0
k.backward(t.FloatTensor([[1, 0]]), retain_variables=True) # 需要两次反向求导
j[:, 0] = m.grad.data
m.grad.data.zero_()
# [0, 1] dk0/dm1, dk1/dm1
k.backward(t.FloatTensor([[0, 1]]))
j[:, 1] = m.grad.data
print('jacobian matrix is')
print(j)

我们要注意backward()里面另外的一个参数retain_variables=True,这个参数默认是False,也就是反向传播之后这个计算图的内存会被释放,这样就没办法进行第二次反向传播了,所以我们需要设置为True,因为这里我们需要进行两次反向传播求得jacobian矩阵。

 

posted @ 2017-12-09 16:04  demianzhang  阅读(5222)  评论(1编辑  收藏  举报