(一)色阶图

1.  前言

     色阶图适合二维的数据,而且横轴跟纵轴的标签都比较多。本期的数据:

     Example data shows concurrent user sessions over time, taken from a development environment.

     翻译过来大意就是:展示的是随着时间的推移用户会话并发的个数

     数据结构:

 星期数 时间点 会话数
day hour value
1 1 16

     资料来源链接

     图形:

          

 

2.  色阶图

        1)本地链接本地色阶图demo展示

        2)知识点:  1.   怎么画色阶图

                      2.   读取csv格式数据画图,并且解决中文乱码问题

                      3.   图形的转变效果: d3.transition().duration()

                      4.   x轴文字竖放以及标签突出重点

        3)图形效果:

             自己应用的场景:某品牌商想重点关注自己的产品型号在重点电商店铺的销量情况,这里涉及的型号和店铺都很多,导致excel数据表非常的庞大而稀疏,所以用色阶图会比较直观的展示出top-N的店铺里哪种型号卖的好,某些特定的型号会在哪些店铺买的好。颜色的深浅就代表销量的多少,越深越多,越浅越少。

                    

        4)完整的网页代码(内含详细解释)

  1 <!DOCTYPE html>
  2 <meta charset="utf-8">
  3 <html>
  4   <head>
  5     <style>   //css样式区
  6       rect.bordered {stroke: #E6E6E6;stroke-width:2px;}
  7       text.mono {font-size: 9pt;font-family: Consolas, courier;fill: #aaa;}
  8       text.axis-workweek {fill: #000;}
  9       text.axis-worktime {fill: #000;}
 10     </style>
 11     <script src="http://d3js.org/d3.v3.js"></script>
 12   </head>
 13   <body>
 14     <div id="chart"></div>
 15     <div id="dataset-picker">
 16     </div>
 17     <script type="text/javascript">
 18     //1. 先定义一些全局变量
 19       var margin = { top: 80, right: 0, bottom: 100, left: 150 },
 20           width = 1000 - margin.left - margin.right,
 21           height = 800 - margin.top - margin.bottom,
 22           gridSize = Math.floor(width / 73),//格子的大小
 23           legendElementWidth = gridSize*5, //图例的宽度
 24           buckets = 9,
 25           colors = ["#ffffd9","#edf8b1","#c7e9b4","#7fcdbb","#41b6c4","#1d91c0","#225ea8","#253494","#081d58"], // alternatively colorbrewer.YlGnBu[9]
 26           times=[['E408','0'],['E488','0'],['E518','0'],['E568','0'],['G1800','1'],['G2800','1'],['G3800','1'],['IP110','0'],['IP1188','0'],['IP2780','1'],['IP2880S','1'],['IP7280','1'],['IP8780','0'],['IX6580','0'],['IX6780','0'],['IX6880','0'],['LBP151dw','0'],['LBP2900+','0'],['LBP5960(A3)','0'],['LBP6018L','1'],['LBP6018W','0'],['LBP6230dn','1'],['LBP6230dw','0'],['LBP6300dn','0'],['LBP7010C','1'],['LBP7100Cn','0'],['LBP7200Cd','0'],['LBP8100n(A3)','0'],['LBP9100Cdn(A3)','0'],['MF211','0'],['MF212w','1'],['MF215','0'],['MF216n','0'],['MF226dn','0'],['MF229dw','0'],['MF3010','0'],['MF4712','1'],['MF4752','1'],['MF6140dn','0'],['MF621Cn','0'],['MF623Cn','0'],['MF628Cw','0'],['MF725Cdn','0'],['MF727Cdw','0'],['MF810Cdn','0'],['MG2400','0'],['MG2580S','1'],['MG2980','0'],['MG3680','1'],['MG5780','0'],['MG6880','0'],['MG7780','1'],['MP236','0'],['MP288','1'],['MX498','0'],['MX538','0'],['MX728','0'],['MX928','0'],['PRO-1','0'],['PRO-10','0'],['PRO-100','0'],['PRO-500','0']]
 27           days = ['店铺1','店铺2','店铺3','店铺4','店铺5','店铺6','店铺7','店铺8','店铺9','店铺10','店铺11','店铺12','店铺13','店铺14','店铺15','店铺16','店铺17','店铺18','店铺19','店铺20','店铺21','店铺22','店铺23','店铺24','店铺25','店铺26','店铺27','店铺28','店铺29','店铺30','店铺31','店铺32','店铺33','店铺34','店铺35','店铺36','店铺37','店铺38','店铺39','店铺40','店铺41','店铺42','店铺43','店铺44','店铺45','店铺46','店铺47','店铺48','店铺49','店铺50','店铺51','店铺52','店铺53','店铺54','店铺55','店铺56','店铺57','店铺58','店铺59','店铺60','店铺61','店铺62','店铺63','店铺64','店铺65','店铺66','店铺67','店铺68','店铺69','店铺70','店铺71','店铺72','店铺73','店铺74','店铺75','店铺76','店铺77','店铺78','店铺79','店铺80','店铺81','店铺82','店铺83','店铺84','店铺85','店铺86','店铺87','店铺88','店铺89','店铺90','店铺91','店铺92','店铺93','店铺94','店铺95','店铺96','店铺97','店铺98','店铺99','店铺100','店铺101','店铺102','店铺103','店铺104','店铺105','店铺106','店铺107','店铺108','店铺109','店铺110','店铺111','店铺112','店铺113','店铺114','店铺115','店铺116','店铺117','店铺118','店铺119','店铺120']
 28           datasets = ["data.csv", "data2.csv"];  //数据文件变量
 29      //2. 画布
 30       var svg = d3.select("#chart").append("svg")
 31           .attr("width", width + margin.left + margin.right)
 32           .attr("height", height + margin.top + margin.bottom)
 33           .append("g")
 34           .attr("transform", "translate(" + margin.left + "," + margin.top + ")");
 35      //3. 轴Y
 36      var dayLabels = svg.selectAll(".dayLabel")
 37           .data(days)
 38           .enter().append("text")
 39             .text(function (d) { return d; })
 40             .attr("x", 0)
 41             .attr("y", function (d, i) { return i * gridSize; })
 42             .style("text-anchor", "end")
 43             .attr("transform", "translate(-6," + gridSize / 1.5 + ")")
 44             .attr("class", function (d, i) { return ((i >= 0 && i <= 29) ? "dayLabel mono axis axis-workweek" : "dayLabel mono axis"); }) ;//轴标签是否明显显示
 45       //4. 轴X
 46       var timeLabels = svg.selectAll(".timeLabel")
 47           .data(times)
 48           .enter().append("text")
 49             .text(function(d) { return d[0]; })
 50             .attr("x",gridSize)
 51             .attr("y", 0)
 52             .style("text-anchor", "start")
 53             .attr("transform",function(d,i) { return "translate(" + gridSize*(i+1) + ", 8)rotate(" + (- 90) + ")"}) //x轴文字竖放
 54             .attr("class", function(d, i) {console.log(d);return ((d[1]==1) ? "timeLabel mono axis axis-worktime" : "timeLabel mono axis"); })//轴标签是否明显显示
 55 
 56       //5. 定义heatmapChart函数,输入文件路径即可画图
 57       var heatmapChart = function(tsvFile) {
 58         var csv = d3.dsv(",", "text/csv;charset=gb2312"); //解决中文转码
 59         csv(tsvFile,function(d) { return {day: +d.day,hour: +d.hour,value: +d.value};},
 60 
 61         function(error, data) {
 62           var colorScale = d3.scale.quantile() //比例尺:与quantize类似,但输入值域是独立的值,适合已经对数据分类的情形。
 63               .domain([0, buckets - 1, d3.max(data, function (d) { return d.value; })])
 64               .range(colors);
 65 
 66           var cards = svg.selectAll(".hour")
 67               .data(data, function(d) {return d.day+':'+d.hour;});
 68 
 69           cards.append("title");
 70 
 71           cards.enter().append("rect")
 72               .attr("x", function(d) { return (d.hour - 1) * gridSize; })
 73               .attr("y", function(d) { return (d.day - 1) * gridSize; })
 74               .attr("rx", 4)
 75               .attr("ry", 4)
 76               .attr("class", "hour bordered")
 77               .attr("width", gridSize)
 78               .attr("height", gridSize)
 79               .style("fill", colors[0]);
 80 
 81          //颜色渐变效果
 82           cards.transition().duration(1000)
 83               .style("fill", function(d) { return colorScale(d.value); });
 84 
 85           cards.select("title").text(function(d) { return d.value; });
 86 
 87           cards.exit().remove();
 88 
 89          //添加图例
 90           var legend = svg.selectAll(".legend")
 91               .data([0].concat(colorScale.quantiles()), function(d) { return d; });
 92 
 93           legend.enter().append("g")
 94               .attr("class", "legend");
 95 
 96           legend.append("rect")
 97             .attr("x", width-150)
 98             .attr("y",function(d, i) { return legendElementWidth * i; })
 99             .attr("width", legendElementWidth)
100             .attr("height", gridSize / 2)
101             .style("fill", function(d, i) { return colors[i]; });
102 
103           legend.append("text")
104             .attr("class", "mono")
105             .text(function(d) { return "" + Math.round(d); })
106             .attr("x", width-150+gridSize*2)
107             .attr("y",function(d, i) { return legendElementWidth * i-gridSize; })
108              .style("fill", "black");
109           legend.exit().remove();
110 
111         });
112       };
113 
114       //6. 调用前面的heatmapChart函数,输入数据文件名称
115       heatmapChart(datasets[0]);
116 
117       //7. 按钮
118       var datasetpicker = d3.select("#dataset-picker").selectAll(".dataset-button")
119         .data(datasets);
120 
121       datasetpicker.enter()
122         .append("input")
123         .attr("value", function(d){ return "Dataset " + d })
124         .attr("type", "button")
125         .attr("class", "dataset-button")
126         .on("click", function(d) {
127           heatmapChart(d);
128         });
129     </script>
130   </body>
131 </html>
View Code

 

   

posted on 2016-10-17 00:09  datastory  阅读(4936)  评论(0编辑  收藏  举报

导航