Android的消息机制

提到消息机制,想必大家都不陌生吧,在日常开发中不可避免要涉及到这方面的内容。从开发的角度来说,Handler是Android的消息机制的上层接口,这使得在开发过程中只需要和Handler交互即可。Handler的使用过程很简单,通过它可以轻松地将一个任务切换到Handler所在的线程中去执行。由于Android的开发规范的限制,我们并不能在子线程中访问UI控件,否则就会触发程序异常,这个时候通过Handler就可以将更新的UI的操作切换到主线程中执行,因此从本质上来来说,Handler并不是专门用于更新UI的,它只是常被开发者用来更新UI。

Android中的消息机制主要指Handler的运行机制,Handler的运行需要底层的MessageQueue和Looper的支撑。MessageQueue翻译过来就是消息队列,它内部存储了一组消息,以队列的形式对外提供插入和删除的过程,虽然叫做消息队列,但是它内部存储结构并不是真正的队列,而是采用单链表的数据结构来存储消息列表,Looper翻译过来就是循环,这里可以理解为消息循环。由于MessageQueue只是一个消息的存储单元,它不能去处理消息,而Looper填补了这个功能,Looper会无限循环的形式去查找是否有新的消息,如果有的话就处理消息,否则就中一直等待。Looper中还有一个特殊的概念,那就是ThreadLocal,Threadlocal并不是线程,它的作用是可以在每个线程中存储数据。

我们知道,Handler创建的时候会采用当前线程的Looper来构造消息循环系统,那么Handler内部如何获取到当前线程的Looper呢,这就要使用ThreadLocal了,ThreadLocal可以在不同的线程中互不干扰地存储并提供数据,通过ThreadLocal可以轻松获取每个线程的Looper。需要注意的是,线程是默认没有Looper的,如果需要使用Handler就必须为线程创建Looper,我们经常提到的主线程,也叫UI线程,它就是ActivityThread,ActivityThread被创建时就会初始化Looper,这也是在主线程中默认可以使用Handler的原因。

Android的消息机制概述

我们知道Handler的主要作用是将一个任务切换到某个指定的线程中去执行,那么Android为什么要提供这个功能呢,这是因为Android规定访问UI只能在主线程中进行,如果子线程中访问UI,那么程序就会抛出异常。

  void checkThread() {
        if (mThread != Thread.currentThread()) {
            throw new CalledFromWrongThreadException(
                    "Only the original thread that created a view hierarchy can touch its views.");
        }
    }

这是ViewRootImpl的checkThread方法,从这段代码就可以看出,如果不在当前线程,就会抛出异常。同时呢,Android不建议在主线程中进行耗时操作, 否则会导致程序无法响应,即ANR。那么系统为什么允许在子线程中访问UI呢,这是因为Android中的UI控件并不是线程安全,它同时也延伸了Java系统中默认进程的话会产生默认的单线程习惯,当用户点击、滑动等事件操作时,UI线程是负责分发的,统一管理会更高效点,采取单线程来处理UI操作,对于开发者来说也不是很麻烦,只是需要通过Handler切换下UI访问的执行线程即可。

简单描述下Handler的工作原理,Handler创建完毕后,这个时候内部的Looper以及MessageQueue就可以和Handler一起协同工作,然后通过Handler的post方法将一个Runnable投递到Handler内部的Looper中去处理,也可以通过Handler的send方法发送一个消息,这个消息同样会在Looper中去处理。

Android消息机制分析

先看下整体的架构图:

整体UML图

  • Looper有一个MessageQueue消息队列
  • MessageQueue有一组待处理的Message
  • Message中有一个用于处理消息的Handler
  • Handler中有Looper和MessageQueue

Looper的工作原理

Looper在Android的消息机制扮演着消息循环的角色,具体来说就是它会不停地从MessageQueue中查看是否有新消息过来,如果有新的消息的就会立刻处理,否则就一直阻塞在那里。首先看下它的构造方法:

  private Looper(boolean quitAllowed) {
        mQueue = new MessageQueue(quitAllowed);
        mThread = Thread.currentThread();
  }

在构造方法中,它会创建一个MessageQueue对象,然后将当前线程的对象给保存起来。我们知道,Handler的工作需要Looper,没有Looper线程就会报错,那么如何为一个线程创建Looper呢,有以下方法:

    public static void prepare() {
        prepare(true);
    }

    private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        sThreadLocal.set(new Looper(quitAllowed));
    }

    public static void prepareMainLooper() {
        prepare(false);
        synchronized (Looper.class) {
            if (sMainLooper != null) {
                throw new IllegalStateException("The main Looper has already been prepared.");
            }
            sMainLooper = myLooper();
        }
    }

从中我们可以看出,每个线程只有一个Looper,多创建一个会报错,然后prepareMainLooper这个方法主要给主线程也就是ActivityThread创建Looper使用,其本质也是通过prepare方法来实现的。

    public void quit() {
        mQueue.quit(false);
    }

    public void quitSafely() {
        mQueue.quit(true);
    }

Looper提供了quit和quitSafely方法退出一个Looper,这两者最主要区别在于一个设定退出标记,一个是把消息队列中的已有消息处理完毕后才安全地退出。

当然还有Looper的loop方法是最核心的。

public static void loop() {
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        final MessageQueue queue = me.mQueue;

        // Make sure the identity of this thread is that of the local process,
        // and keep track of what that identity token actually is.
        Binder.clearCallingIdentity();
        final long ident = Binder.clearCallingIdentity();

        for (;;) {
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }

            // This must be in a local variable, in case a UI event sets the logger
            final Printer logging = me.mLogging;
            if (logging != null) {
                logging.println(">>>>> Dispatching to " + msg.target + " " +
                        msg.callback + ": " + msg.what);
            }

            final long traceTag = me.mTraceTag;
            if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
                Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
            }
            try {
                msg.target.dispatchMessage(msg);
            } finally {
                if (traceTag != 0) {
                    Trace.traceEnd(traceTag);
                }
            }

            if (logging != null) {
                logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
            }

            // Make sure that during the course of dispatching the
            // identity of the thread wasn't corrupted.
            final long newIdent = Binder.clearCallingIdentity();
            if (ident != newIdent) {
                Log.wtf(TAG, "Thread identity changed from 0x"
                        + Long.toHexString(ident) + " to 0x"
                        + Long.toHexString(newIdent) + " while dispatching to "
                        + msg.target.getClass().getName() + " "
                        + msg.callback + " what=" + msg.what);
            }

            msg.recycleUnchecked();
        }
    }

这个也比较好理解,loop方法是一个死循环,唯一跳出循环的方式就是MessageQueue的next方法返回了null。Looper就会调用MessageQueue的quit或者quitSafely方法来通知消息队列退出,当消息队列被标记为退出状态时,它的next方法就会返回null,也就是说looper必须退出,否则loop方法就会无限循序下去。

MessageQueue工作原理

在Android中MessageQueue主要包含两个操作:插入和读取。读取操作本身会伴随着删除操作,插入和读取对应的方法分别为enqueueMessage和next,其中enqueueMessage的作用是往消息队列中插入一条消息,而next的作用是从消息队列中取出一条消息并将其从消息队列中移除。在MessageQueue内部通过一个单链表的数据结构来维护消息列表,单链表在插入和删除上比较有优势。

看下enqueueMessage代码:

boolean enqueueMessage(Message msg, long when) {
        if (msg.target == null) {
            throw new IllegalArgumentException("Message must have a target.");
        }
        if (msg.isInUse()) {
            throw new IllegalStateException(msg + " This message is already in use.");
        }

        synchronized (this) {
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);
                msg.recycle();
                return false;
            }

            msg.markInUse();
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }

            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }

主要操作其实就是单链表的插入操作。

看下next代码:

 Message next() {
        // Return here if the message loop has already quit and been disposed.
        // This can happen if the application tries to restart a looper after quit
        // which is not supported.
        final long ptr = mPtr;
        if (ptr == 0) {
            return null;
        }

        int pendingIdleHandlerCount = -1; // -1 only during first iteration
        int nextPollTimeoutMillis = 0;
        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }

            nativePollOnce(ptr, nextPollTimeoutMillis);

            synchronized (this) {
                // Try to retrieve the next message.  Return if found.
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                Message msg = mMessages;
                if (msg != null && msg.target == null) {
                    // Stalled by a barrier.  Find the next asynchronous message in the queue.
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
                if (msg != null) {
                    if (now < msg.when) {
                        // Next message is not ready.  Set a timeout to wake up when it is ready.
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        // Got a message.
                        mBlocked = false;
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;
                        } else {
                            mMessages = msg.next;
                        }
                        msg.next = null;
                        if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                        msg.markInUse();
                        return msg;
                    }
                } else {
                    // No more messages.
                    nextPollTimeoutMillis = -1;
                }

                // Process the quit message now that all pending messages have been handled.
                if (mQuitting) {
                    dispose();
                    return null;
                }

                // If first time idle, then get the number of idlers to run.
                // Idle handles only run if the queue is empty or if the first message
                // in the queue (possibly a barrier) is due to be handled in the future.
                if (pendingIdleHandlerCount < 0
                        && (mMessages == null || now < mMessages.when)) {
                    pendingIdleHandlerCount = mIdleHandlers.size();
                }
                if (pendingIdleHandlerCount <= 0) {
                    // No idle handlers to run.  Loop and wait some more.
                    mBlocked = true;
                    continue;
                }

                if (mPendingIdleHandlers == null) {
                    mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                }
                mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
            }

            // Run the idle handlers.
            // We only ever reach this code block during the first iteration.
            for (int i = 0; i < pendingIdleHandlerCount; i++) {
                final IdleHandler idler = mPendingIdleHandlers[i];
                mPendingIdleHandlers[i] = null; // release the reference to the handler

                boolean keep = false;
                try {
                    keep = idler.queueIdle();
                } catch (Throwable t) {
                    Log.wtf(TAG, "IdleHandler threw exception", t);
                }

                if (!keep) {
                    synchronized (this) {
                        mIdleHandlers.remove(idler);
                    }
                }
            }

            // Reset the idle handler count to 0 so we do not run them again.
            pendingIdleHandlerCount = 0;

            // While calling an idle handler, a new message could have been delivered
            // so go back and look again for a pending message without waiting.
            nextPollTimeoutMillis = 0;
        }
    }

可以发现next方法就是一个无限循环的方法,如果消息队列中没有消息,那么next方法就会一直阻塞在这里,当有新消息到来时,next方法会返回这条消息并将其从单链表中移除。

Message

每个消息用Message表示,Message主要包含以下内容:

数据类型 成员变量 解释
int what 消息类别
long when 消息触发时间
int arg1 参数1
int arg2 参数2
Object obj 消息内容
Handler target 消息响应方
Runnable callback 回调方法

创建消息的过程,就是填充消息的上述内容的一项或多项。

消息池

在代码中,可能经常看到recycle()方法,咋一看,可能是在做虚拟机的gc()相关的工作,其实不然,这是用于把消息加入到消息池的作用。这样的好处是,当消息池不为空时,可以直接从消息池中获取Message对象,而不是直接创建,提高效率。

静态变量sPool的数据类型为Message,通过next成员变量,维护一个消息池;静态变量MAX_POOL_SIZE代表消息池的可用大小;消息池的默认大小为50。

消息池常用的操作方法是obtain()和recycle()。

public static Message obtain() {
    synchronized (sPoolSync) {
        if (sPool != null) {
            Message m = sPool;
            sPool = m.next;
            m.next = null; //从sPool中取出一个Message对象,并消息链表断开
            m.flags = 0; // 清除in-use flag
            sPoolSize--; //消息池的可用大小进行减1操作
            return m;
        }
    }
    return new Message(); // 当消息池为空时,直接创建Message对象
}

obtain(),从消息池取Message,都是把消息池表头的Message取走,再把表头指向next。

public void recycle() {
    if (isInUse()) { //判断消息是否正在使用
        if (gCheckRecycle) { //Android 5.0以后的版本默认为true,之前的版本默认为false.
            throw new IllegalStateException("This message cannot be recycled because it is still in use.");
        }
        return;
    }
    recycleUnchecked();
}

//对于不再使用的消息,加入到消息池
void recycleUnchecked() {
    //将消息标示位置为IN_USE,并清空消息所有的参数。
    flags = FLAG_IN_USE;
    what = 0;
    arg1 = 0;
    arg2 = 0;
    obj = null;
    replyTo = null;
    sendingUid = -1;
    when = 0;
    target = null;
    callback = null;
    data = null;
    synchronized (sPoolSync) {
        if (sPoolSize < MAX_POOL_SIZE) { //当消息池没有满时,将Message对象加入消息池
            next = sPool;
            sPool = this;
            sPoolSize++; //消息池的可用大小进行加1操作
        }
    }
}

recycle(),将Message加入到消息池的过程,都是把Message加到链表的表头。

Handler工作原理

Handler的工作主要包含消息的发送和接收过程。消息发送可以通过post的一系列的方法以及send的一系列方法来实现,post其实也是通过send的方法来实现的。

看下Handler的构造方法。

    public Handler(Callback callback, boolean async) {
        if (FIND_POTENTIAL_LEAKS) {
            final Class<? extends Handler> klass = getClass();
            if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                    (klass.getModifiers() & Modifier.STATIC) == 0) {
                Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                    klass.getCanonicalName());
            }
        }

        mLooper = Looper.myLooper();
        if (mLooper == null) {
            throw new RuntimeException(
                "Can't create handler inside thread that has not called Looper.prepare()");
        }
        mQueue = mLooper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
    }

从中可以看到关联MessageQueue、Looper,所以在Handler之前Looper要prepare先,如果没有Looper的话,就会抛出“Can't create handler inside thread that has not called Looper.prepare()”这句话。

    public final boolean sendMessage(Message msg)
    {
        return sendMessageDelayed(msg, 0);
    }

    public final boolean sendEmptyMessage(int what)
    {
        return sendEmptyMessageDelayed(what, 0);
    }

    public final boolean sendEmptyMessageDelayed(int what, long delayMillis) {
        Message msg = Message.obtain();
        msg.what = what;
        return sendMessageDelayed(msg, delayMillis);
     }

     public final boolean sendEmptyMessageAtTime(int what, long uptimeMillis) {
        Message msg = Message.obtain();
        msg.what = what;
        return sendMessageAtTime(msg, uptimeMillis);
      }

     public final boolean sendMessageDelayed(Message msg, long delayMillis)
     {
        if (delayMillis < 0) {
            delayMillis = 0;
        }
        return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
     }

     public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
      }

     public final boolean sendMessageAtFrontOfQueue(Message msg) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, 0);
      }

从中可以看出,最终都是调用sendMessageAtTime/sendMessageAtFrontOfQueue方法,进而执行enqueueMessage方法,最终把消息发送到MessageQueue队列中。
相关消息发送方式

那么消息又是如何在Handler处理的呢?

    public void dispatchMessage(Message msg) {
        if (msg.callback != null) {
            handleCallback(msg);
        } else {
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            handleMessage(msg);
        }
    }

通过dispatchMessage来处理消息的。

ThreadLocal工作原理

ThreadLocal是一个 线程内部的数据存储类,通过它可以在指定的线程中存储数据,数据存储以后,只有在指定线程中可以获取到存储的数据,对于其他线程来说是无法获取到数据。在日常开发中用到ThreadLocal的场景很少,但是在某些特殊的场景下,通过ThreadLocal可以轻松地实现一些看起来很复杂的功能,这一点在Android源码中也有所体现,比如Looper、ActivityThread以及AMS中都用到ThreadLocal。

ThreadLocal.set(T value):将value存储到当前线程的TLS区域。

  public void set(T value) {
      Thread currentThread = Thread.currentThread(); //获取当前线程
      Values values = values(currentThread); //查找当前线程的本地储存区
      if (values == null) {
          //当线程本地存储区,尚未存储该线程相关信息时,则创建Values对象
          values = initializeValues(currentThread);
      }
      //保存数据value到当前线程this
      values.put(this, value);
  }

在set方法中,首先会通过values方法来获取当前线程的ThreadLocal数据,通过put方式去获取。

ThreadLocal.get():获取当前线程TLS区域的数据。

public T get() {
      Thread currentThread = Thread.currentThread(); //获取当前线程
      Values values = values(currentThread); //查找当前线程的本地储存区
      if (values != null) {
          Object[] table = values.table;
          int index = hash & values.mask;
          if (this.reference == table[index]) {
              return (T) table[index + 1]; //返回当前线程储存区中的数据
          }
      } else {
          //创建Values对象
          values = initializeValues(currentThread);
      }
      return (T) values.getAfterMiss(this); //从目标线程存储区没有查询是则返回null
  }

get方法同样是取出当前线程的localValues对象,如果这个对象为null,那么就返回初始值。

在Looper源码中,有这么一句:

   // sThreadLocal.get() will return null unless you've called prepare().
    static final ThreadLocal<Looper> sThreadLocal = new ThreadLocal<Looper>();

从ThreadLocal的set和get方法可以看出,它们所操作的对象都是当前线程的localValues对象的table数组,因此在不同线程中访问同一个ThreadLocal的set和get方法,它们对ThreadLocal所做的读/写操作仅限于各自线程的内部,这也就是为什么ThreadLocal可以在多个线程中互不干扰地存储和修改数据。

所以,整体来说,Handler、Looper、MessageQueue、Message这三者之间的关系如下:
消息机制关系图

主线程的消息循环

Android的主线程就是ActivityThread,主线程的入口方法在main,在main方法中系统会通过Looper.prepareMainLooper方法来创建主线程的Looper以及MessageQueue,并通过Looper.loop方法来开启主线程的消息循环。

public static void main(String[] args) {
        Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "ActivityThreadMain");
        SamplingProfilerIntegration.start();

        // CloseGuard defaults to true and can be quite spammy.  We
        // disable it here, but selectively enable it later (via
        // StrictMode) on debug builds, but using DropBox, not logs.
        CloseGuard.setEnabled(false);

        Environment.initForCurrentUser();

        // Set the reporter for event logging in libcore
        EventLogger.setReporter(new EventLoggingReporter());

        // Make sure TrustedCertificateStore looks in the right place for CA certificates
        final File configDir = Environment.getUserConfigDirectory(UserHandle.myUserId());
        TrustedCertificateStore.setDefaultUserDirectory(configDir);

        Process.setArgV0("<pre-initialized>");

        Looper.prepareMainLooper();

        ActivityThread thread = new ActivityThread();
        thread.attach(false);

        if (sMainThreadHandler == null) {
            sMainThreadHandler = thread.getHandler();
        }

        if (false) {
            Looper.myLooper().setMessageLogging(new
                    LogPrinter(Log.DEBUG, "ActivityThread"));
        }

        // End of event ActivityThreadMain.
        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
        Looper.loop();

        throw new RuntimeException("Main thread loop unexpectedly exited");
    }

主线程的消息循环开始以后,ActivityThread还需要一个Handler来和消息队列进行交互,这个Handler就是ActivityThread.H,它内部定义了一组消息类型,主要包括了四大组件的启动和停止等过程。


    private class H extends Handler {
        public static final int LAUNCH_ACTIVITY         = 100;
        public static final int PAUSE_ACTIVITY          = 101;
        public static final int PAUSE_ACTIVITY_FINISHING= 102;
        public static final int STOP_ACTIVITY_SHOW      = 103;
        public static final int STOP_ACTIVITY_HIDE      = 104;
        public static final int SHOW_WINDOW             = 105;
        public static final int HIDE_WINDOW             = 106;
        public static final int RESUME_ACTIVITY         = 107;
        public static final int SEND_RESULT             = 108;
        public static final int DESTROY_ACTIVITY        = 109;
        public static final int BIND_APPLICATION        = 110;
        public static final int EXIT_APPLICATION        = 111;
        public static final int NEW_INTENT              = 112;
        public static final int RECEIVER                = 113;
        public static final int CREATE_SERVICE          = 114;
        public static final int SERVICE_ARGS            = 115;
        public static final int STOP_SERVICE            = 116;

        public static final int CONFIGURATION_CHANGED   = 118;
        public static final int CLEAN_UP_CONTEXT        = 119;
        public static final int GC_WHEN_IDLE            = 120;
        public static final int BIND_SERVICE            = 121;
        public static final int UNBIND_SERVICE          = 122;
        public static final int DUMP_SERVICE            = 123;
        public static final int LOW_MEMORY              = 124;
        public static final int ACTIVITY_CONFIGURATION_CHANGED = 125;
        public static final int RELAUNCH_ACTIVITY       = 126;
        public static final int PROFILER_CONTROL        = 127;
        public static final int CREATE_BACKUP_AGENT     = 128;
        public static final int DESTROY_BACKUP_AGENT    = 129;
        public static final int SUICIDE                 = 130;
        public static final int REMOVE_PROVIDER         = 131;
        public static final int ENABLE_JIT              = 132;
        public static final int DISPATCH_PACKAGE_BROADCAST = 133;
        public static final int SCHEDULE_CRASH          = 134;
        public static final int DUMP_HEAP               = 135;
        public static final int DUMP_ACTIVITY           = 136;
        public static final int SLEEPING                = 137;
        public static final int SET_CORE_SETTINGS       = 138;
        public static final int UPDATE_PACKAGE_COMPATIBILITY_INFO = 139;
        public static final int TRIM_MEMORY             = 140;
        public static final int DUMP_PROVIDER           = 141;
        public static final int UNSTABLE_PROVIDER_DIED  = 142;
        public static final int REQUEST_ASSIST_CONTEXT_EXTRAS = 143;
        public static final int TRANSLUCENT_CONVERSION_COMPLETE = 144;
        public static final int INSTALL_PROVIDER        = 145;
        public static final int ON_NEW_ACTIVITY_OPTIONS = 146;
        public static final int CANCEL_VISIBLE_BEHIND = 147;
        public static final int BACKGROUND_VISIBLE_BEHIND_CHANGED = 148;
        public static final int ENTER_ANIMATION_COMPLETE = 149;
        public static final int START_BINDER_TRACKING = 150;
        public static final int STOP_BINDER_TRACKING_AND_DUMP = 151;
        public static final int MULTI_WINDOW_MODE_CHANGED = 152;
        public static final int PICTURE_IN_PICTURE_MODE_CHANGED = 153;
        public static final int LOCAL_VOICE_INTERACTION_STARTED = 154;

        String codeToString(int code) {
            if (DEBUG_MESSAGES) {
                switch (code) {
                    case LAUNCH_ACTIVITY: return "LAUNCH_ACTIVITY";
                    case PAUSE_ACTIVITY: return "PAUSE_ACTIVITY";
                    case PAUSE_ACTIVITY_FINISHING: return "PAUSE_ACTIVITY_FINISHING";
                    case STOP_ACTIVITY_SHOW: return "STOP_ACTIVITY_SHOW";
                    case STOP_ACTIVITY_HIDE: return "STOP_ACTIVITY_HIDE";
                    case SHOW_WINDOW: return "SHOW_WINDOW";
                    case HIDE_WINDOW: return "HIDE_WINDOW";
                    case RESUME_ACTIVITY: return "RESUME_ACTIVITY";
                    case SEND_RESULT: return "SEND_RESULT";
                    case DESTROY_ACTIVITY: return "DESTROY_ACTIVITY";
                    case BIND_APPLICATION: return "BIND_APPLICATION";
                    case EXIT_APPLICATION: return "EXIT_APPLICATION";
                    case NEW_INTENT: return "NEW_INTENT";
                    case RECEIVER: return "RECEIVER";
                    case CREATE_SERVICE: return "CREATE_SERVICE";
                    case SERVICE_ARGS: return "SERVICE_ARGS";
                    case STOP_SERVICE: return "STOP_SERVICE";
                    case CONFIGURATION_CHANGED: return "CONFIGURATION_CHANGED";
                    case CLEAN_UP_CONTEXT: return "CLEAN_UP_CONTEXT";
                    case GC_WHEN_IDLE: return "GC_WHEN_IDLE";
                    case BIND_SERVICE: return "BIND_SERVICE";
                    case UNBIND_SERVICE: return "UNBIND_SERVICE";
                    case DUMP_SERVICE: return "DUMP_SERVICE";
                    case LOW_MEMORY: return "LOW_MEMORY";
                    case ACTIVITY_CONFIGURATION_CHANGED: return "ACTIVITY_CONFIGURATION_CHANGED";
                    case RELAUNCH_ACTIVITY: return "RELAUNCH_ACTIVITY";
                    case PROFILER_CONTROL: return "PROFILER_CONTROL";
                    case CREATE_BACKUP_AGENT: return "CREATE_BACKUP_AGENT";
                    case DESTROY_BACKUP_AGENT: return "DESTROY_BACKUP_AGENT";
                    case SUICIDE: return "SUICIDE";
                    case REMOVE_PROVIDER: return "REMOVE_PROVIDER";
                    case ENABLE_JIT: return "ENABLE_JIT";
                    case DISPATCH_PACKAGE_BROADCAST: return "DISPATCH_PACKAGE_BROADCAST";
                    case SCHEDULE_CRASH: return "SCHEDULE_CRASH";
                    case DUMP_HEAP: return "DUMP_HEAP";
                    case DUMP_ACTIVITY: return "DUMP_ACTIVITY";
                    case SLEEPING: return "SLEEPING";
                    case SET_CORE_SETTINGS: return "SET_CORE_SETTINGS";
                    case UPDATE_PACKAGE_COMPATIBILITY_INFO: return "UPDATE_PACKAGE_COMPATIBILITY_INFO";
                    case TRIM_MEMORY: return "TRIM_MEMORY";
                    case DUMP_PROVIDER: return "DUMP_PROVIDER";
                    case UNSTABLE_PROVIDER_DIED: return "UNSTABLE_PROVIDER_DIED";
                    case REQUEST_ASSIST_CONTEXT_EXTRAS: return "REQUEST_ASSIST_CONTEXT_EXTRAS";
                    case TRANSLUCENT_CONVERSION_COMPLETE: return "TRANSLUCENT_CONVERSION_COMPLETE";
                    case INSTALL_PROVIDER: return "INSTALL_PROVIDER";
                    case ON_NEW_ACTIVITY_OPTIONS: return "ON_NEW_ACTIVITY_OPTIONS";
                    case CANCEL_VISIBLE_BEHIND: return "CANCEL_VISIBLE_BEHIND";
                    case BACKGROUND_VISIBLE_BEHIND_CHANGED: return "BACKGROUND_VISIBLE_BEHIND_CHANGED";
                    case ENTER_ANIMATION_COMPLETE: return "ENTER_ANIMATION_COMPLETE";
                    case MULTI_WINDOW_MODE_CHANGED: return "MULTI_WINDOW_MODE_CHANGED";
                    case PICTURE_IN_PICTURE_MODE_CHANGED: return "PICTURE_IN_PICTURE_MODE_CHANGED";
                    case LOCAL_VOICE_INTERACTION_STARTED: return "LOCAL_VOICE_INTERACTION_STARTED";
                }
            }
            return Integer.toString(code);
        }
        public void handleMessage(Message msg) {
            if (DEBUG_MESSAGES) Slog.v(TAG, ">>> handling: " + codeToString(msg.what));
            switch (msg.what) {
                case LAUNCH_ACTIVITY: {
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityStart");
                    final ActivityClientRecord r = (ActivityClientRecord) msg.obj;

                    r.packageInfo = getPackageInfoNoCheck(
                            r.activityInfo.applicationInfo, r.compatInfo);
                    handleLaunchActivity(r, null, "LAUNCH_ACTIVITY");
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                } break;
                case RELAUNCH_ACTIVITY: {
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityRestart");
                    ActivityClientRecord r = (ActivityClientRecord)msg.obj;
                    handleRelaunchActivity(r);
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                } break;
                case PAUSE_ACTIVITY: {
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityPause");
                    SomeArgs args = (SomeArgs) msg.obj;
                    handlePauseActivity((IBinder) args.arg1, false,
                            (args.argi1 & USER_LEAVING) != 0, args.argi2,
                            (args.argi1 & DONT_REPORT) != 0, args.argi3);
                    maybeSnapshot();
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                } break;
                case PAUSE_ACTIVITY_FINISHING: {
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityPause");
                    SomeArgs args = (SomeArgs) msg.obj;
                    handlePauseActivity((IBinder) args.arg1, true, (args.argi1 & USER_LEAVING) != 0,
                            args.argi2, (args.argi1 & DONT_REPORT) != 0, args.argi3);
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                } break;
                case STOP_ACTIVITY_SHOW: {
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityStop");
                    SomeArgs args = (SomeArgs) msg.obj;
                    handleStopActivity((IBinder) args.arg1, true, args.argi2, args.argi3);
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                } break;
                case STOP_ACTIVITY_HIDE: {
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityStop");
                    SomeArgs args = (SomeArgs) msg.obj;
                    handleStopActivity((IBinder) args.arg1, false, args.argi2, args.argi3);
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                } break;
                case SHOW_WINDOW:
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityShowWindow");
                    handleWindowVisibility((IBinder)msg.obj, true);
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    break;
                case HIDE_WINDOW:
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityHideWindow");
                    handleWindowVisibility((IBinder)msg.obj, false);
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    break;
                case RESUME_ACTIVITY:
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityResume");
                    SomeArgs args = (SomeArgs) msg.obj;
                    handleResumeActivity((IBinder) args.arg1, true, args.argi1 != 0, true,
                            args.argi3, "RESUME_ACTIVITY");
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    break;
                case SEND_RESULT:
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityDeliverResult");
                    handleSendResult((ResultData)msg.obj);
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    break;
                case DESTROY_ACTIVITY:
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityDestroy");
                    handleDestroyActivity((IBinder)msg.obj, msg.arg1 != 0,
                            msg.arg2, false);
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    break;
                case BIND_APPLICATION:
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "bindApplication");
                    AppBindData data = (AppBindData)msg.obj;
                    handleBindApplication(data);
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    break;
                case EXIT_APPLICATION:
                    if (mInitialApplication != null) {
                        mInitialApplication.onTerminate();
                    }
                    Looper.myLooper().quit();
                    break;
                case NEW_INTENT:
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityNewIntent");
                    handleNewIntent((NewIntentData)msg.obj);
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    break;
                case RECEIVER:
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "broadcastReceiveComp");
                    handleReceiver((ReceiverData)msg.obj);
                    maybeSnapshot();
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    break;
                case CREATE_SERVICE:
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, ("serviceCreate: " + String.valueOf(msg.obj)));
                    handleCreateService((CreateServiceData)msg.obj);
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    break;
                case BIND_SERVICE:
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "serviceBind");
                    handleBindService((BindServiceData)msg.obj);
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    break;
                case UNBIND_SERVICE:
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "serviceUnbind");
                    handleUnbindService((BindServiceData)msg.obj);
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    break;
                case SERVICE_ARGS:
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, ("serviceStart: " + String.valueOf(msg.obj)));
                    handleServiceArgs((ServiceArgsData)msg.obj);
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    break;
                case STOP_SERVICE:
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "serviceStop");
                    handleStopService((IBinder)msg.obj);
                    maybeSnapshot();
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    break;
                case CONFIGURATION_CHANGED:
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "configChanged");
                    mCurDefaultDisplayDpi = ((Configuration)msg.obj).densityDpi;
                    mUpdatingSystemConfig = true;
                    handleConfigurationChanged((Configuration)msg.obj, null);
                    mUpdatingSystemConfig = false;
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    break;
                case CLEAN_UP_CONTEXT:
                    ContextCleanupInfo cci = (ContextCleanupInfo)msg.obj;
                    cci.context.performFinalCleanup(cci.who, cci.what);
                    break;
                case GC_WHEN_IDLE:
                    scheduleGcIdler();
                    break;
                case DUMP_SERVICE:
                    handleDumpService((DumpComponentInfo)msg.obj);
                    break;
                case LOW_MEMORY:
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "lowMemory");
                    handleLowMemory();
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    break;
                case ACTIVITY_CONFIGURATION_CHANGED:
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityConfigChanged");
                    handleActivityConfigurationChanged((ActivityConfigChangeData) msg.obj,
                            msg.arg1 == 1 ? REPORT_TO_ACTIVITY : !REPORT_TO_ACTIVITY);
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    break;
                case PROFILER_CONTROL:
                    handleProfilerControl(msg.arg1 != 0, (ProfilerInfo)msg.obj, msg.arg2);
                    break;
                case CREATE_BACKUP_AGENT:
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "backupCreateAgent");
                    handleCreateBackupAgent((CreateBackupAgentData)msg.obj);
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    break;
                case DESTROY_BACKUP_AGENT:
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "backupDestroyAgent");
                    handleDestroyBackupAgent((CreateBackupAgentData)msg.obj);
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    break;
                case SUICIDE:
                    Process.killProcess(Process.myPid());
                    break;
                case REMOVE_PROVIDER:
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "providerRemove");
                    completeRemoveProvider((ProviderRefCount)msg.obj);
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    break;
                case ENABLE_JIT:
                    ensureJitEnabled();
                    break;
                case DISPATCH_PACKAGE_BROADCAST:
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "broadcastPackage");
                    handleDispatchPackageBroadcast(msg.arg1, (String[])msg.obj);
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    break;
                case SCHEDULE_CRASH:
                    throw new RemoteServiceException((String)msg.obj);
                case DUMP_HEAP:
                    handleDumpHeap(msg.arg1 != 0, (DumpHeapData)msg.obj);
                    break;
                case DUMP_ACTIVITY:
                    handleDumpActivity((DumpComponentInfo)msg.obj);
                    break;
                case DUMP_PROVIDER:
                    handleDumpProvider((DumpComponentInfo)msg.obj);
                    break;
                case SLEEPING:
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "sleeping");
                    handleSleeping((IBinder)msg.obj, msg.arg1 != 0);
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    break;
                case SET_CORE_SETTINGS:
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "setCoreSettings");
                    handleSetCoreSettings((Bundle) msg.obj);
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    break;
                case UPDATE_PACKAGE_COMPATIBILITY_INFO:
                    handleUpdatePackageCompatibilityInfo((UpdateCompatibilityData)msg.obj);
                    break;
                case TRIM_MEMORY:
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "trimMemory");
                    handleTrimMemory(msg.arg1);
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    break;
                case UNSTABLE_PROVIDER_DIED:
                    handleUnstableProviderDied((IBinder)msg.obj, false);
                    break;
                case REQUEST_ASSIST_CONTEXT_EXTRAS:
                    handleRequestAssistContextExtras((RequestAssistContextExtras)msg.obj);
                    break;
                case TRANSLUCENT_CONVERSION_COMPLETE:
                    handleTranslucentConversionComplete((IBinder)msg.obj, msg.arg1 == 1);
                    break;
                case INSTALL_PROVIDER:
                    handleInstallProvider((ProviderInfo) msg.obj);
                    break;
                case ON_NEW_ACTIVITY_OPTIONS:
                    Pair<IBinder, ActivityOptions> pair = (Pair<IBinder, ActivityOptions>) msg.obj;
                    onNewActivityOptions(pair.first, pair.second);
                    break;
                case CANCEL_VISIBLE_BEHIND:
                    handleCancelVisibleBehind((IBinder) msg.obj);
                    break;
                case BACKGROUND_VISIBLE_BEHIND_CHANGED:
                    handleOnBackgroundVisibleBehindChanged((IBinder) msg.obj, msg.arg1 > 0);
                    break;
                case ENTER_ANIMATION_COMPLETE:
                    handleEnterAnimationComplete((IBinder) msg.obj);
                    break;
                case START_BINDER_TRACKING:
                    handleStartBinderTracking();
                    break;
                case STOP_BINDER_TRACKING_AND_DUMP:
                    handleStopBinderTrackingAndDump((ParcelFileDescriptor) msg.obj);
                    break;
                case MULTI_WINDOW_MODE_CHANGED:
                    handleMultiWindowModeChanged((IBinder) msg.obj, msg.arg1 == 1);
                    break;
                case PICTURE_IN_PICTURE_MODE_CHANGED:
                    handlePictureInPictureModeChanged((IBinder) msg.obj, msg.arg1 == 1);
                    break;
                case LOCAL_VOICE_INTERACTION_STARTED:
                    handleLocalVoiceInteractionStarted((IBinder) ((SomeArgs) msg.obj).arg1,
                            (IVoiceInteractor) ((SomeArgs) msg.obj).arg2);
                    break;
            }
            Object obj = msg.obj;
            if (obj instanceof SomeArgs) {
                ((SomeArgs) obj).recycle();
            }
            if (DEBUG_MESSAGES) Slog.v(TAG, "<<< done: " + codeToString(msg.what));
        }

ActivityThread通过ApplicationThread和AMS进行进程间通信,AMS以进程间通信的方式完成ActivityThread的请求回调ApplicationThread中Binder方法然后ApplicationThread向H发送消息,H收到消息后会将ApplicationThread的逻辑切换到ActivityThread中去执行,即切换到主线程中去执行,整个过程就是主线程的消息循环模型。

HandlerThread

HandlerThread类的源码:

public class HandlerThread extends Thread {
    int mPriority;
    int mTid = -1;
    Looper mLooper;

    public HandlerThread(String name) {
        super(name);
        mPriority = Process.THREAD_PRIORITY_DEFAULT;
    }
   
    public HandlerThread(String name, int priority) {
        super(name);
        mPriority = priority;
    }
  
    protected void onLooperPrepared() {
    }

    @Override
    public void run() {
        mTid = Process.myTid();
        Looper.prepare();
        synchronized (this) {
            mLooper = Looper.myLooper();
            notifyAll();
        }
        Process.setThreadPriority(mPriority);
        onLooperPrepared();
        Looper.loop();
        mTid = -1;
    }
    
    public Looper getLooper() {
        if (!isAlive()) {
            return null;
        }
        
        // If the thread has been started, wait until the looper has been created.
        synchronized (this) {
            while (isAlive() && mLooper == null) {
                try {
                    wait();
                } catch (InterruptedException e) {
                }
            }
        }
        return mLooper;
    }

    public boolean quit() {
        Looper looper = getLooper();
        if (looper != null) {
            looper.quit();
            return true;
        }
        return false;
    }
  
    public boolean quitSafely() {
        Looper looper = getLooper();
        if (looper != null) {
            looper.quitSafely();
            return true;
        }
        return false;
    }

    /**
     * Returns the identifier of this thread. See Process.myTid().
     */
    public int getThreadId() {
        return mTid;
    }
}

可以看到HandlerThread继承于Thread类,在获取Looper对象时候,当线程已经启动,则等待直到looper创建完成才能获取,从本质上看HandlerThread是对Thread的封装,主要用途在于多个线程的通信,会有同步的问题,那么Android对此直接提供了HandlerThread类。

HandlerThread实战

在HandlerThread线程中运行Loop()方法,在其他线程中通过Handler发送消息到HandlerThread线程。通过wait/notifyAll的方式,有效地解决了多线程的同步问题。从源码中我们也可以看到当looper没获取成功就会阻塞,然后有运行完就会去唤醒所有阻塞的线程。

// Step 1: 创建并启动HandlerThread线程,内部包含Looper
HandlerThread handlerThread = new HandlerThread("test");
handlerThread.start();

// Step 2: 创建Handler
Handler handler = new Handler(handlerThread.getLooper());

// Step 3: 发送消息
handler.post(new Runnable() {

        @Override
        public void run() {
            System.out.println("thread id="+Thread.currentThread().getId());
        }
    });

阅读扩展

源于对掌握的Android开发基础点进行整理,罗列下已经总结的文章,从中可以看到技术积累的过程。
1,Android系统简介
2,ProGuard代码混淆
3,讲讲Handler+Looper+MessageQueue关系
4,Android图片加载库理解
5,谈谈Android运行时权限理解
6,EventBus初理解
7,Android 常见工具类
8,对于Fragment的一些理解
9,Android 四大组件之 " Activity "
10,Android 四大组件之" Service "
11,Android 四大组件之“ BroadcastReceiver "
12,Android 四大组件之" ContentProvider "
13,讲讲 Android 事件拦截机制
14,Android 动画的理解
15,Android 生命周期和启动模式
16,Android IPC 机制
17,View 的事件体系
18,View 的工作原理
19,理解 Window 和 WindowManager
20,Activity 启动过程分析
21,Service 启动过程分析
22,Android 性能优化
23,Android 消息机制
24,Android Bitmap相关
25,Android 线程和线程池
26,Android 中的 Drawable 和动画
27,RecylerView 中的装饰者模式
28,Android 触摸事件机制
29,Android 事件机制应用
30,Cordova 框架的一些理解
31,有关 Android 插件化思考
32,开发人员必备技能——单元测试

posted @ 2017-02-17 10:18  cryAllen  阅读(2522)  评论(0编辑  收藏  举报