2017-2018 ACM-ICPC Pacific Northwest Regional Contest (Div. 1)

A. Odd Palindrome

所有回文子串长度都是奇数等价于不存在长度为$2$的偶回文子串,即相邻两个字符都不同。

#include<cstdio>
#include<cstring>
char a[1111111];int n,i;
int main(){
	scanf("%s",a+1);
	n=strlen(a+1);
	for(i=1;i<n;i++)if(a[i]==a[i+1])return puts("Or not."),0;
	puts("Odd.");
}

  

B. Enlarging Enthusiasm

注意到方案数不超过$(n-1)\times (n-1)!$,爆搜出所有可行方案即可,需要大量常数优化。

#include<cstdio>
#include<algorithm>
using namespace std;
const int N=15;
int n,m,i,a[N],f[(1<<12)+5],ans;
int cnt[(1<<12)+5];
int w[N];
void dfs(int S,int mx,int q,int x){
	if(!S){
		ans++;
		return;
	}
	mx++;
	if((S&-S)==S){
		int j=f[S];
		int nowq=mx-j>q?mx-j:q;
		if(x>=nowq)ans++;
		return;
	}
	int U=S;
	while(U){
		int i=U&-U,j=f[i];
		int nowq=mx-j>q?mx-j:q;
		if(x>=nowq)dfs(S^i,j+nowq,nowq,x-nowq);
		U^=i;
	}
}
void gao(int S,int mx,int q,int x){
	if(!S){
		ans++;
		return;
	}
	mx++;
	for(int U=S;U;U-=U&-U){
		int i=U&-U;
		if(i==(1<<(n-1)))continue;
		int nowq=mx-f[i];
		if(nowq<q)nowq=q;
		if(x>=nowq)dfs(S^i,f[i]+nowq,nowq,x-nowq);
	}
}
int main(){
	scanf("%d%d",&n,&m);
	
	for(i=1;i<1<<n;i++)cnt[i]=cnt[i>>1]+(i&1);
	for(w[0]=i=1;i<=n;i++)w[i]=w[i-1]*i;
	
	for(i=0;i<n;i++)scanf("%d",&a[i]);
	sort(a,a+n);
	for(i=0;i<n;i++)f[1<<i]=a[i];
	gao((1<<n)-1,a[n-1],0,m);
	printf("%d",ans);
}
/*
12 700
1 2 3 4 5 6 7 8 9 10 11 12
*/

  

C. Fear Factoring

考虑每个约数的贡献,那么分段等差数列求和即可。

时间复杂度$O(\sqrt{b})$。

#include<cstdio>
typedef long long ll;
ll cal(ll n){
	ll i,j;
	ll ans=0;
	for(i=1;i<=n;i=j+1){
		j=n/(n/i);
		ans+=(i+j)*(j-i+1)*(n/i);
	}
	return ans;
}
int main(){
	ll a,b;
	scanf("%lld%lld",&a,&b);
	printf("%lld",(cal(b)-cal(a-1))/2);
}

  

D. Rainbow Roads

对于每个点,若其有超过一条同色的边,那么对应子树都不是Good点,差分前缀和打标记即可。

#include<cstdio>
#include<algorithm>
using namespace std;
typedef pair<int,int>P;
const int N=300010;
int n,i,j,k,x,y,z,g[N],v[N],w[N],nxt[N],ed;
int f[N],dfn,st[N],en[N];
int m,ans,s[N];
P q[N];
inline void add(int x,int y,int z){
	v[++ed]=y;
	w[ed]=z;
	nxt[ed]=g[x];
	g[x]=ed;
}
void dfs(int x,int y){
	st[x]=++dfn;
	f[x]=y;
	for(int i=g[x];i;i=nxt[i])if(v[i]!=y)dfs(v[i],x);
	en[x]=dfn;
}
int main(){
	scanf("%d",&n);
	for(i=1;i<n;i++){
		scanf("%d%d%d",&x,&y,&z);
		add(x,y,z),add(y,x,z);
	}
	dfs(1,0);
	for(i=1;i<=n;i++){
		m=0;
		for(j=g[i];j;j=nxt[j])q[++m]=P(w[j],v[j]);
		sort(q+1,q+m+1);
		for(j=1;j<=m;j=k){
			for(k=j;k<=m&&q[j].first==q[k].first;k++);
			if(k>j+1){
				for(x=j;x<k;x++){
					y=q[x].second;
					if(y==f[i]){
						s[1]++;
						s[st[i]]--;
						s[en[i]+1]++;
					}else{
						s[st[y]]++;
						s[en[y]+1]--;
					}
				}
			}
		}
	}
	for(i=1;i<=n;i++)s[i]+=s[i-1];
	for(i=1;i<=n;i++)if(!s[st[i]])ans++;
	printf("%d\n",ans);
	for(i=1;i<=n;i++)if(!s[st[i]])printf("%d\n",i);
}

  

E. Straight Shot

二分水平分速度,检查最终是否走到了$(x,0)$。

#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int N=111;
int n,i;
double X,V,dx,dy;
double lim,goal=1e100,tmp,L,R,MID,l[N],r[N],v[N];
double cal(double dy){
	double dx=sqrt(V*V-dy*dy);
	double x=0,y=0;
	for(int i=1;i<=n;i++){
		y+=dy*(l[i]-x);
		y+=(dy+v[i])*(r[i]-l[i]);
		x=r[i];
	}
	y+=dy*(X-x);
	tmp=X/dx;
	return y/dx;
}
int main(){
	scanf("%d%lf%lf",&n,&X,&V);
	for(i=1;i<=n;i++)scanf("%lf%lf%lf",&l[i],&r[i],&v[i]);
	L=-V,R=V;
	for(int _=1000;_;_--){
		MID=(L+R)/2;
		if(cal(MID)<0)L=MID;else R=MID;
	}
	lim=X/V*2;
	L=(L+R)/2;
	if(fabs(cal(L))<1e-8){
		cal(L);
		goal=tmp;
	}
	if(goal>lim+1e-8)puts("Too hard");
	else printf("%.3f",goal);
}

  

F. Distinct Distances

答案点只可能取在每个点、两个点的中点,以及两对点垂直平分线的交点。

#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int N=50;
const double eps=1e-9;
inline int sgn(double x){
	if(x>eps)return 1;
	if(x<-eps)return -1;
	return 0;
}
struct P{
	double x,y;
	P(){}
	P(double _x,double _y){x=_x,y=_y;}
	P operator+(P b){return P(x+b.x,y+b.y);}
	P operator-(P b){return P(x-b.x,y-b.y);}
	P operator*(double b){return P(x*b,y*b);}
	P operator/(double b){return P(x/b,y/b);}
	void read(){scanf("%lf%lf",&x,&y);}
	double len(){return x*x+y*y;}
	double dis(const P&b){return (x-b.x)*(x-b.x)+(y-b.y)*(y-b.y);}
	bool operator==(P b){return !sgn(x-b.x)&&!sgn(y-b.y);}
	P rot90(){return P(-y,x);}
}a[N],e[N*N][2];
int n,m,i,j,ans=N;
double d[N];
inline void solve(P O){
	//printf("%.10f %.10f\n",O.x,O.y);
	int i;
	for(i=1;i<=n;i++)d[i]=O.dis(a[i]);
	sort(d+1,d+n+1);
	int t=1;
	for(i=2;i<=n&&t<ans;i++)if(d[i]>d[i-1]+eps)t++;
	if(t<ans)ans=t;
}
inline void makeline(P a,P b){
	if(a==b)return;
	P c=(a+b)/2.0;
	solve(c);
	b=b-a;
	e[++m][0]=c;
	e[m][1]=c+b.rot90();
	//printf("%.5f %.5f %.5f %.5f\n",e[m][0].x,e[m][0].y,e[m][1].x,e[m][1].y);
}
inline double cross(P a,P b){
	return a.x*b.y-a.y*b.x;
}
inline void gao(P a,P b,P p,P q){
	double U=cross(p-a,q-p),D=cross(b-a,q-p);
	if(!sgn(D))return;
	//puts("!");
	solve(a+(b-a)*(U/D));
}
int main(){
	scanf("%d",&n);
	for(i=1;i<=n;i++)a[i].read();
	for(i=1;i<=n;i++)solve(a[i]);
	for(i=1;i<=n;i++)for(j=1;j<i;j++){
		makeline(a[i],a[j]);
	}
	//makeline(a[4],a[5]);
	//makeline(a[5],a[1]);
	for(i=1;i<=m;i++)for(j=1;j<i;j++)gao(e[i][0],e[i][1],e[j][0],e[j][1]);
	printf("%d",ans);
}
/*
6
0 -5
1 0
-1 0
2 3
3 2
-3 0
*/

  

G. Security Badge

对区间离散化,那么只需要检查$O(m)$个人是否可行,每次暴力Floodfill判断即可。

时间复杂度$O(m(n+m))$。

#include<cstdio>
#include<algorithm>
using namespace std;
const int N=10010;
int n,m,k,S,T,i,j,cnt,q[N],K;
int g[N],ed,v[N],vc[N],vd[N],nxt[N],vis[N],ans;
inline void add(int x,int y,int c,int d){
	v[++ed]=y;
	vc[ed]=c;
	vd[ed]=d;
	nxt[ed]=g[x];
	g[x]=ed;
}
void dfs(int x){
	if(vis[x])return;
	vis[x]=1;
	for(int i=g[x];i;i=nxt[i])if(vc[i]<=K&&K<=vd[i])dfs(v[i]);
}
int main(){
	scanf("%d%d%d%d%d",&n,&m,&k,&S,&T);
	for(i=1;i<=m;i++){
		int a,b,c,d;
		scanf("%d%d%d%d",&a,&b,&c,&d);
		add(a,b,c,d);
		q[++cnt]=c-1;
		q[++cnt]=d;
	}
	sort(q+1,q+cnt+1);
	for(i=2;i<=cnt;i++)if(q[i]!=q[i-1]){
		K=q[i];
		for(j=1;j<=n;j++)vis[j]=0;
		dfs(S);
		if(vis[T])ans+=q[i]-q[i-1];
	}
	printf("%d",ans);
}

  

H. Avoiding Airports

将每架飞机拆成上飞机和下飞机两个事件,并按照时间顺序依次考虑。

设$dp[x]$表示最后乘坐第$x$架飞机的最小代价,那么转移是经典斜率优化形式,对于每个点用单调队列维护凸壳即可。

时间复杂度$O(m\log m)$。

#include<cstdio>
#include<algorithm>
#include<vector>
using namespace std;
typedef long long ll;
const int N=200010;
const ll inf=1LL<<60;
int n,m,i,e[N][4],cnt;
struct E{
	int x,y;
	E(){}
	E(int _x,int _y){x=_x,y=_y;}
}w[N<<1];
ll dp[N],ans=inf;
struct Line{
	ll k,b;
	Line(){}
	Line(ll _k,ll _b){k=_k,b=_b;}
	ll f(ll x){return k*x+b;}
};
vector<Line>g[N];
int head[N],tail[N],deg[N];
inline bool cmp(const E&a,const E&b){
	if(a.x!=b.x)return a.x<b.x;
	return a.y<b.y;
}
inline double pos(const Line&a,const Line&b){
	return 1.0*(a.b-b.b)/(b.k-a.k);
}
inline void ins(int o,ll k,ll b){
	if(b>=inf)return;
	Line now(k,b);
	int&h=head[o],&t=tail[o];
	if(h<=t){
		if(g[o][t].k==k){
			if(g[o][t].b<=b)return;
			t--;
		}
	}
	while(h<t&&pos(g[o][t-1],g[o][t])>=pos(g[o][t],now))t--;
	g[o][++t]=now;
}
inline ll cal(int o,ll x){
	int&h=head[o],&t=tail[o];
	if(h>t)return inf;
	while(h<t&&g[o][h].f(x)>g[o][h+1].f(x))h++;
	return g[o][h].f(x);
}
int main(){
	scanf("%d%d",&n,&m);
	for(i=1;i<=m;i++){
		scanf("%d%d%d%d",&e[i][0],&e[i][1],&e[i][2],&e[i][3]);
		deg[e[i][1]]++;
		w[++cnt]=E(e[i][2],-i);//s
		w[++cnt]=E(e[i][3],i);//e
	}
	sort(w+1,w+cnt+1,cmp);
	deg[1]++;
	for(i=1;i<=n;i++)tail[i]=-1,g[i].resize(deg[i]+2);
	ins(1,0,0);//kx+b
	for(i=1;i<=cnt;i++){
		int x=w[i].y;
		//printf("->%d %d\n",w[i].x,x);
		if(x<0){
			int y=-x;
			dp[y]=cal(e[y][0],e[y][2]);
			if(dp[y]<inf)dp[y]+=1LL*e[y][2]*e[y][2];
			//printf("! %d %lld\n",y,dp[y]);
		}else{
			//printf("ins %d %lld\n",e[x][1],dp[x]);
			ins(e[x][1],-2LL*e[x][3],dp[x]+1LL*e[x][3]*e[x][3]);
		}
	}
	for(i=1;i<=m;i++)if(e[i][1]==n)ans=min(ans,dp[i]);
	printf("%lld",ans);
}
/*
3 5
1 1 10 20
1 2 30 40
1 2 50 60
1 2 70 80
2 3 90 95


5 8
1 2 1 10
2 4 11 16
2 1 9 12
3 5 28 100
1 2 3 8
4 3 20 21
1 3 13 27
3 5 23 24
*/

  

I. Long Long Strings

初始串取字符集无穷的超长字符串是最坏情况,压缩区间后暴力操作即可。

#include<stdio.h>
#include<iostream>
#include<string.h>
#include<string>
#include<ctype.h>
#include<math.h>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<bitset>
#include<algorithm>
#include<time.h>
using namespace std;
void fre() {  }
#define MS(x, y) memset(x, y, sizeof(x))
#define ls o<<1
#define rs o<<1|1
typedef long long LL;
typedef unsigned long long UL;
typedef unsigned int UI;
template <class T1, class T2>inline void gmax(T1 &a, T2 b) { if (b > a)a = b; }
template <class T1, class T2>inline void gmin(T1 &a, T2 b) { if (b < a)a = b; }
const int N = 0, M = 0, Z = 1e9 + 7;
template <class T1, class T2>inline void gadd(T1 &a, T2 b) { a = (a + b) % Z; }
int casenum, casei;
int n;
const LL inf = 1e12;
struct A
{
	LL st;
	LL ed;
	LL stval;
	bool operator < (const A &b)const
	{
		return st < b.st;
	}
};
set<A>sot1, sot2;
void doit(set<A> &sot)
{
	char ch;
	while(~scanf(" %c", &ch))
	{
		if(ch == 'D')
		{
			LL pos;
			scanf("%lld", &pos);
			auto it = --sot.upper_bound({pos});
			LL st = it->st;
			LL ed = it->ed;
			LL stval = it->stval;
			sot.erase(it);
			vector<A>vt;
			if(st <= pos - 1)
			{
				vt.push_back({st, pos - 1, stval});
			}
			if(pos + 1 <= ed)
			{
				vt.push_back({pos, ed - 1, stval + pos + 1 - st});
			}
			for(auto w=sot.lower_bound({pos + 1}),nxt = w;w!= sot.end();w=nxt)
			{
				nxt = w; ++nxt;
				vt.push_back({w->st - 1, w->ed - 1, w->stval});
				sot.erase(w);
			}
			for(auto it : vt)sot.insert(it);
		}
		else if(ch == 'I')
		{
			char val_;
			LL pos, val;
			scanf("%lld %c", &pos, &val_);
			val = inf + val_;
			auto it = --sot.upper_bound({pos});
			LL st = it->st;
			LL ed = it->ed;
			LL stval = it->stval;
			sot.erase(it);
			vector<A>vt;
			if(st <= pos - 1)
			{
				vt.push_back({st, pos - 1, stval});
			}
			if(pos <= ed)
			{
				vt.push_back({pos + 1, ed + 1, stval + pos - st});
			}
			for(auto w=sot.lower_bound({pos + 1}),nxt = w;w!= sot.end();w=nxt)
			{
				nxt = w; ++nxt;
				vt.push_back({w->st + 1, w->ed + 1, w->stval});
				sot.erase(w);
			}
			vt.push_back({pos, pos, val});
			for(auto it : vt)sot.insert(it);
		}
		else break;
		/*
		for(auto it : sot)
		{
			printf("%lld %lld %lld\n", it.st, it.ed, it.stval);
		}
		puts("show end");
		*/
	}	
}
bool check()
{
	LL ed1 = (--sot1.end())->ed;
	LL ed2 = (--sot1.end())->ed;
	if(ed1 != ed2)return 0;
	LL now = 1;
	while(now <= ed1)
	{
		auto it1 = sot1.begin();
		auto it2 = sot2.begin();
		LL ed1 = it1->ed;
		LL ed2 = it2->ed;
		if(it1->stval != it2->stval)return 0;
		LL stval = it1->stval;
		LL nxt = min(it1->ed, it2->ed) + 1;
		sot1.erase(it1);
		sot2.erase(it2);
		if(nxt <= ed1)
		{
			sot1.insert({nxt, ed1, nxt - now + stval});
		}
		if(nxt <= ed2)
		{
			sot2.insert({nxt, ed2, nxt - now + stval});
		}
		now = nxt;
	}
	return 1;
}
int main()
{
	sot1.clear();
	sot1.insert({1, inf, 1});
	sot2.clear();
	sot2.insert({1, inf, 1});
	doit(sot1);
	doit(sot2);
	/*
	for(auto it : sot1)
	{
		printf("%lld %lld %lld\n", it.st, it.ed, it.stval);
	}
	puts("-------------");
	for(auto it : sot2)
	{
		printf("%lld %lld %lld\n", it.st, it.ed, it.stval);
	}
	*/
	puts(check() ? "0" : "1");
	return 0;
}
/*
【trick&&吐槽】


【题意】


【分析】


【时间复杂度&&优化】


*/

  

J. Grid Coloring

设$f[i][j]$表示考虑前$i$行,第$i$行前$j$个都是蓝色,后面都是红色的方案数,暴力转移即可。

时间复杂度$O(n^3)$。

#include<cstdio>
typedef long long ll;
const int N=40;
int n,m,i,j,k;
ll ans,f[N][N];
char a[N][N];
bool can[N][N];
inline bool check(int x,int y){
	for(int i=1;i<=y;i++)if(a[x][i]=='R')return 0;
	for(int i=y+1;i<=m;i++)if(a[x][i]=='B')return 0;
	return 1;
}
int main(){
	scanf("%d%d",&n,&m);
	for(i=1;i<=n;i++)scanf("%s",a[i]+1);
	for(i=1;i<=n;i++){
		for(j=0;j<=m;j++){
			can[i][j]=check(i,j);
		}
	}
	//f[i][j] [1..j] is B, j+1..m is R
	for(j=0;j<=m;j++)f[1][j]=can[1][j];
	for(i=1;i<n;i++)for(j=0;j<=m;j++)for(k=0;k<=j;k++)f[i+1][k]+=f[i][j]*can[i+1][k];
	for(j=0;j<=m;j++)ans+=f[n][j];
	printf("%lld",ans);
}

  

K. Spinning Up Palindromes

显然最优解中一定是从右往左操作,故问题可以转化成:给定数字$A$,找到一个数位和最小的数字$B$,使得$A+B$是回文串。

考虑从两边往中间DP,设$f[i][j][k]$表示考虑前后$i$个位置,前面希望后面进位为$j$,后面对前面进位为$k$的最小代价。

#include<cstdio>
#include<cstring>
const int N=50,inf=10000000;
int n,m,l,r,i,j,k,x,y,t,w;
char s[N];
int a[N],f[N][2][2],ans=inf;
inline void up(int&a,int b){a>b?(a=b):0;}
int main(){
	scanf("%s",s+1);
	n=strlen(s+1);
	for(i=1;i<=n;i++)a[i]=s[i]-'0';
	for(i=0;i<=n+5;i++)for(j=0;j<2;j++)for(k=0;k<2;k++)f[i][j][k]=inf;
	f[0][0][0]=f[0][1][0]=0;
	for(l=1,r=n;l<r;l++,r--)for(i=0;i<2;i++)for(j=0;j<2;j++)if(f[l-1][i][j]<inf){
		w=f[l-1][i][j];
		for(x=0;x<10;x++)for(y=0;y<10;y++){//what is b
			for(k=0;k<2;k++){//jinwei from l+1
				int A=a[l]+x+k,nA=0;
				if(A>=10)A-=10,nA++;
				if(nA!=i)continue;
				int B=a[r]+y+j,nB=0;
				if(B>=10)B-=10,nB++;
				if(A!=B)continue;
				up(f[l][k][nB],w+x+y);
			}
		}
	}
	m=n/2;
	if(n%2){
		for(i=0;i<2;i++)for(j=0;j<2;j++)if(f[m][i][j]<inf){
			w=f[m][i][j];
			for(x=0;x<10;x++){
				if((a[m+1]+x+j)/10!=i)continue;
				up(ans,w+x);
			}
		}
	}else{
		for(i=0;i<2;i++)for(j=0;j<2;j++)if(f[m][i][j]<inf){
			w=f[m][i][j];
			if(i==j)up(ans,w);
		}
	}
	printf("%d",ans);
}

  

L. Delayed Work

暴力枚举人数即可。

#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long ll;
ll K,P,X,i;double ans;
int main(){
	scanf("%lld%lld%lld",&K,&P,&X);
	ans=1e20;
	for(i=1;i<=3000000;i++){
		ans=min(ans,1.0*K*P/i+1.0*X*i);
	}
	printf("%.3f",ans);
}

  

M. Unsatisfying

若初始2-SAT无解,那么答案显然为$0$。

如果不存在$\neg x\lor\neg y$,那么无解。

否则枚举每个$x$,强行规定$x=true$,若2-SAT无解则答案为$1$。

否则答案只能为$2$。

时间复杂度$O(n(n+m))$。

#include<stdio.h>
#include<iostream>
#include<string.h>
#include<string>
#include<ctype.h>
#include<math.h>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<bitset>
#include<algorithm>
#include<time.h>
using namespace std;
void fre() { freopen("c://test//input.in", "r", stdin); freopen("c://test//output.out", "w", stdout); }
#define MS(x, y) memset(x, y, sizeof(x))
#define ls o<<1
#define rs o<<1|1
typedef long long LL;
typedef unsigned long long UL;
typedef unsigned int UI;
template <class T1, class T2>inline void gmax(T1 &a, T2 b) { if (b > a)a = b; }
template <class T1, class T2>inline void gmin(T1 &a, T2 b) { if (b < a)a = b; }
const int N = 4010, M = 0, Z = 1e9 + 7, inf = 0x3f3f3f3f;
template <class T1, class T2>inline void gadd(T1 &a, T2 b) { a = (a + b) % Z; }
int casenum, casei;


int n, m, nn;
int x, y;
vector<int> a[N];
bool pick[N];
int sta[N], top;
bool dfs(int x)
{
	if(pick[x ^ 1]) return 0;
	if(pick[x]) return 1;
	pick[x] = 1;
	sta[++ top] = x;
	for(int i = a[x].size() - 1; ~ i; -- i){
		int y = a[x][i];
		if(!dfs(y)) return 0;
	}
	return 1;
}
bool solve()
{
	for(int i = 0; i < nn; i += 2) if(!pick[i] && !pick[i ^ 1]){
		top = 0;
		if(!dfs(i)){
			while(top) pick[sta[top --]] = 0;
			top = 0;
			if(!dfs(i ^ 1)) return 0;
		}
	}
	return 1;
}

int main()
{
	scanf("%d%d", &n, &m);
	int flag = 0;
	nn = n * 2;
	for(int i = 0; i < nn; i ++) pick[i] = 0, a[i].clear();
	for(int i = 1; i <= m; i ++){
		scanf("%d%d", &x, &y);
		int xx = abs(x), yy = abs(y);
		xx *= 2; yy *= 2;
		xx --; yy --;
		if(x < 0 && y < 0) flag = 1;
		if(x < 0 && y < 0){
			a[xx].push_back(yy ^ 1);
			a[yy].push_back(xx ^ 1);
			//printf("%d %d\n", xx, yy ^ 1);
			//printf("%d %d\n", yy, xx ^ 1);
			
		}
		else if(x < 0 && y > 0){
			a[xx].push_back(yy);
			a[yy ^ 1].push_back(xx ^ 1);
			//printf("%d %d\n", xx, yy);
			//printf("%d %d\n", yy ^ 1, xx ^ 1);
			
		}
		else if(x > 0 && y < 0){
			a[yy].push_back(xx);
			a[xx ^ 1].push_back(yy ^ 1);
			//printf("%d %d\n", yy, xx);
			//printf("%d %d\n", xx ^ 1, yy ^ 1);
			
		}
		else if(x > 0 && y > 0){
			a[xx ^ 1].push_back(yy);
			a[yy ^ 1].push_back(xx);
			//printf("%d %d\n", xx ^ 1, yy);
			//printf("%d %d\n", yy ^ 1, xx);
			
		}
	}
	if(!flag){puts("-1"); return 0;}
	if(!solve()) {puts("0"); return 0;}
	for(int i = 1; i <= n; i ++){
		for(int j = 0; j < nn; j ++){
			//a[i].clear();
			pick[j] = 0;
		}
		int xx = i * 2 - 1;	
		//a[xx].push_back(xx ^ 1);
		a[xx ^ 1].push_back(xx);
		
		if(!solve()){
			puts("1"); return 0;
		}
		//a[xx].pop_back();
		a[xx ^ 1].pop_back();
	}
	puts("2");
	return 0;
}
/*
【trick&&吐槽】


【题意】

4 5
1 2
0 3
2 1
-1 -3
1 4
5 0
-2 3
3 5
4 2
3 -4
7 5
4 6
-2 -3
3 4
5 2
0

【分析】


【时间复杂度&&优化】


*/

  

posted @ 2017-11-15 23:58  Claris  阅读(2142)  评论(3编辑  收藏  举报