XVII Open Cup named after E.V. Pankratiev. GP of Moscow Workshops

A. Centroid Tree

枚举至多两个重心作为根,检查对于每个点是否都满足$2size[x]\leq size[father[x]]$即可。

#include<stdio.h>
#include<iostream>
#include<string.h>
#include<string>
#include<ctype.h>
#include<math.h>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<bitset>
#include<algorithm>
#include<time.h>
using namespace std;
void fre() { freopen("c://test//input.in", "r", stdin); freopen("c://test//output.out", "w", stdout); }
#define MS(x, y) memset(x, y, sizeof(x))
#define ls o<<1
#define rs o<<1|1
typedef long long LL;
typedef unsigned long long UL;
typedef unsigned int UI;
template <class T1, class T2>inline void gmax(T1 &a, T2 b) { if (b > a)a = b; }
template <class T1, class T2>inline void gmin(T1 &a, T2 b) { if (b < a)a = b; }
const int N = 1e5 + 10, M = 0, Z = 1e9 + 7, inf = 0x3f3f3f3f;
template <class T1, class T2>inline void gadd(T1 &a, T2 b) { a = (a + b) % Z; }
int casenum, casei;
int n, m;
vector<int>a[N];
int root;
int treesz;
int sz[N];
int mxp[N];
bool done[N];
int v[N];
bool FLAG;

vector<int>vt;
int getsz(int x, int fa)
{
	sz[x] = 1;
	for (auto y : a[x])if (y != fa && !done[y])
	{
		sz[x] += getsz(y, x);
	}
	return sz[x];
}
void getroot(int x, int fa)
{
	mxp[x] = treesz - sz[x];// root = 0;
	for (auto y : a[x])if (y != fa && !done[y])
	{
		getroot(y, x);
		gmax(mxp[x], sz[y]);
	}
	if (mxp[x] < mxp[root])
	{
		root = x;
		vt.clear(); vt.push_back(x);
	}
	else if (mxp[x] == mxp[root])
	{
		vt.push_back(x);
	}
}

bool check(int x, int fa)
{
	sz[x] = 1;
	for (auto y : a[x])
	{
		if (y == fa)continue;
		if (!check(y, x))return 0;
		sz[x] += sz[y];
	}

	for (auto y : a[x])
	{
		if (y == fa)continue;
		if (sz[y] * 2 > sz[x])return 0;
	}
	return 1;
}

bool dfz(int x)
{
	vt.clear();
	treesz = getsz(x, 0);
	getroot(x, root = 0);

	for (auto y : vt)
	{
		if (check(y, 0))return 1;
	}
	return 0;
}
int main()
{
	//fre();
	mxp[0] = inf;
	scanf("%d%d", &casenum, &n);
	for (casei = 1; casei <= casenum; ++casei)
	{
		for (int i = 1; i <= n; ++i)
		{
			done[i] = 0;
			a[i].clear();
		}
		for (int i = 1; i < n; ++i)
		{
			int x, y;
			scanf("%d%d", &x, &y);
			a[x].push_back(y);
			a[y].push_back(x);
		}

		puts(dfz(1) ? "Centroid" : "Random");

	}
	return 0;
}
/*

2 7
1 2
2 3
3 4
4 5
5 6
6 7
1 2
1 3
2 4
2 5
3 6
3 7

1 7
1 2
1 3
2 4
2 5
3 6
3 7


1 4
1 2
2 3
3 4
*/

  

B. Completely Multiplicative Function

爆搜每个质数是$1$还是$-1$,加上前$n$项的前缀和的绝对值必须小于$\log n$的剪枝即可通过。

更好的做法:对于质数$p$,若$p\bmod 3=1$,则填$1$,否则填$-1$。

#include<cstdio>
#include<algorithm>
using namespace std;
const int N = 1e6 + 10;
char mu[N] =
{
	0,1,1,-1,1,1,-1,-1,1,1,1,-1,-1,1,-1,-1,1,1,1,-1,1,1,-1,-1,-1,1,1,-1,-1,1,-1,1,1,1,1,-1,1,-1,-1,-1,1,1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,-1,1,1,1,-1,-1,1,-1,1,1,1,-1,1,1,-1,-1,1,1,-1,-1,-1,1,-1,-1,1,1,1,-1,1,1,-1,-1,-1,1,1,-1,-1,-1,1,-1,-1,1,1,-1,1,1,-1,1,1,1,-1,1,-1,-1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,-1,-1,1,1,-1,-1,1,1,1,-1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,1,1,1,1,-1,1,1,-1,-1,1,1,1,-1,-1,1,-1,-1,-1,-1,1,1,1,1,-1,1,-1,-1,-1,-1,1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,-1,1,1,-1,1,1,1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,-1,1,-1,1,1,-1,-1,-1,1,-1,1,1,1,1,-1,1,-1,1,1,-1,-1,1,-1,-1,1,1,1,-1,-1,1,-1,-1,1,-1,1,1,1,1,-1,-1,1,-1,1,-1,-1,1,-1,-1,1,1,1,-1,1,1,-1,1,-1,1,-1,-1,-1,1,-1,-1,1,1,1,-1,1,-1,-1,1,-1,1,1,-1,-1,1,-1,-1,-1,-1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,1,-1,1,1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,-1,-1,1,1,1,-1,1,1,1,-1,-1,1,1,1,-1,1,-1,1,-1,-1,-1,-1,1,1,1,-1,-1,1,1,-1,-1,1,1,-1,1,1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,1,-1,1,1,1,1,-1,1,-1,-1,1,-1,1,-1,-1,-1,1,1,1,-1,1,-1,-1,1,-1,1,1,1,1,1,-1,1,-1,1,-1,-1,-1,1,-1,-1,-1,1,1,-1,1,1,1,-1,-1,1,1,-1,-1,1,1,-1,1,1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,1,1,1,1,1,1,1,-1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,1,-1,1,1,-1,-1,1,-1,-1,1,1,1,-1,1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,1,1,-1,1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,1,1,1,-1,1,-1,-1,1,-1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,1,1,1,-1,1,1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,-1,-1,-1,-1,1,1,1,-1,1,1,-1,1,1,1,-1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,-1,-1,1,1,1,-1,-1,1,1,-1,-1,-1,-1,1,-1,1,1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,-1,1,1,-1,1,1,-1,1,-1,-1,1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1,1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,1,-1,1,-1,-1,1,-1,-1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,1,-1,1,-1,1,1,-1,1,-1,1,1,-1,1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,-1,-1,-1,-1,-1,1,1,1,1,-1,1,1,-1,-1,-1,-1,1,1,1,1,-1,1,-1,-1,1,1,1,-1,-1,1,1,-1,1,-1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,1,-1,-1,-1,1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,1,-1,1,-1,-1,1,1,-1,-1,1,-1,-1,1,1
};
int f[N];
int first[N];
int fac[N];
int prim[N], pnum;
int n;
int lg2[N];

void check()
{
	for (int i = 1; i <= n; i++) f[i] = f[i - 1] + mu[i];
	for (int i = 1; i <= n; i++)if (abs(f[i]) > 20)
	{
		printf("f[%d] = %d\n", i, f[i]);
		while (1);
	}
	for (int i = 1; i <= n; ++i)
	{
		for (int j = 1; i * j <= n; ++j)
		{
			if (mu[i * j] != mu[i] * mu[j])
			{
				printf("%d %d %d %d %d %d\n", i, j, i *j, mu[i], mu[j], mu[i * j]);
				puts("ERROR");
				while (1);
			}
		}
	}
}

bool FLAG;
inline char abs(char x) { return x > 0 ? x : -x; }
void dfs(int x,char y)
{
	if (x > n)
	{
		//puts("YES!");
		FLAG = 1;
		return;
	}
	while (fac[x])
	{
		mu[x] = mu[fac[x]] * mu[first[x]];
		y+=mu[x];
		if (abs(y) > lg2[x])return;
		++x;
	}
	if (x > n)
	{
		//puts("YES!");
		FLAG = 1;
		return;
	}
	{
		mu[x] = 1;
		y++;
		if (abs(y) <= lg2[x])
		{
			dfs(x + 1,y);
		}

		if (FLAG)return;
		mu[x] = -1;
		y -= 2;
		if (abs(y) <= lg2[x])
		{
			dfs(x + 1,y);
		}
	}
}

void getprime()
{
	fac[1] = 1;
	for (int i = 2; i < N; i++)
	{
		if (fac[i])continue;
		prim[pnum++] = i;
		for (int j = i + i; j < N; j += i)
		{
			fac[j] = i;
		}
	}
}



int main()
{
	getprime();
	//printf("%d\n", pnum);

	n = 1e6; fac[n + 1] = 0;
	lg2[1] = 1;
	for (int i = 2; i <= n; ++i)
	{
		lg2[i] = lg2[i / 2] + 1;
		if (fac[i])
		{
			first[i] = i / fac[i];
		}
	}

	for (int i = 1; i <= 820; ++i)f[i] = f[i - 1] + mu[i];
	dfs(821,f[820]);
	//check();

	//for (int i = 1; i <= 3000; i++) printf("%d,", mu[i]);

	scanf("%d", &n);
	//n = 10;
	//for (int i = 1; i <= n; i++)if(!fac[i]) printf("%d %d\n", i,mu[i]);
	for (int i = 1; i <= n; i++)printf("%d%c", mu[i], i == n ? '\n' : ' ');


	return 0;
}

  

C. Even and Odd

求出DFS生成树,只保留树边。

对于每个基环,若它是奇环,那么上面的树边都不能保留;若它是偶环,那么若它与某个奇环相交,将会得到更大的奇环,这些边也不能保留。

用并查集维护每个点向上第一条未删去的树边,树状数组判断路径上是否存在奇环,迭代删除$O(\log n)$轮即可。如果直接用并查集维护有交的树边集合,那么只要集合内存在基本奇环则要删除,可以做到更优秀的复杂度。

预处理结束后,对于每个连通块,当成树统计答案即可。

时间复杂度$O(n\log^2n)$。

#include<cstdio>
const int N=200010,M=400010;
int n,m,i,x,y,g[N],v[M],nxt[M],ed;
int d[N],f[N],vis[N],dfn;
int fa[N],c[N][2];
int dep[N],gg[N];
int q[N],V[M],NXT[M],ED;
int st[N],en[N],lim,bit[M];
long long ans[2];
inline void add(int x,int y){v[++ed]=y;nxt[ed]=g[x];g[x]=ed;}
int G(int x){return gg[x]==x?x:gg[x]=G(gg[x]);}
inline void ADD(int x,int y){V[++ED]=y;NXT[ED]=q[x];q[x]=ED;}
inline void modify(int x,int p){for(;x<=lim;x+=x&-x)bit[x]+=p;}
inline int ask(int x){int t=0;for(;x;x-=x&-x)t+=bit[x];return t;}
inline void go(int x,int y){
    //printf("go %d %d\n",x,y);
    while(1){
        x=G(x);
        if(dep[x]<=dep[y])return;
        //printf("del %d\n",x);
        modify(st[x],1);
        modify(en[x],-1);
        gg[x]=f[x];
    }
}
void dfs1(int x,int y){
    f[x]=y;
    vis[x]=++dfn;
    d[x]=d[y]^1;
    dep[x]=dep[y]+1;
    gg[x]=x;
    st[x]=++lim;
    for(int i=g[x];i;i=nxt[i]){
        int u=v[i];
        if(u==y)continue;
        if(!vis[u]){
            //printf("%d->%d\n",x,u);
            dfs1(u,x);
        }
    }
    en[x]=++lim;
}
void dfs2(int x,int y){
    vis[x]=++dfn;
    for(int i=g[x];i;i=nxt[i]){
        int u=v[i];
        if(u==y)continue;
        if(!vis[u]){
            dfs2(u,x);
        }else if(vis[u]<vis[x]){
            if(d[u]==d[x]){
                //printf("odd %d %d\n",x,u);
                go(x,u);
            }else{
                ADD(u,x);
            }
        }
    }
    for(int i=q[x];i;i=NXT[i]){
        int u=V[i];
        //printf("even %d %d asku=%d askx=%d\n",u,x,ask(st[u]),ask(st[x]));
        if(ask(st[u])>ask(st[x]))go(u,x);
    }    
}
int F(int x){return fa[x]==x?x:fa[x]=F(fa[x]);}
inline void merge(int x,int y){
    //printf("merge %d %d\n",x,y);
    x=F(x),y=F(y);
    fa[x]=y;
    ans[0]+=1LL*c[x][0]*c[y][0];
    ans[0]+=1LL*c[x][1]*c[y][1];
    ans[1]+=1LL*c[x][0]*c[y][1];
    ans[1]+=1LL*c[x][1]*c[y][0];
    c[y][0]+=c[x][0];
    c[y][1]+=c[x][1];
}
int main(){
    scanf("%d%d",&n,&m);
    for(i=1;i<=m;i++){
        scanf("%d%d",&x,&y);
        add(x,y),add(y,x);
    }
    dfs1(1,0);
    for(i=1;i<=n;i++)vis[i]=0;
    for(int _=10;_;_--){
        for(i=1;i<=n;i++)vis[i]=q[i]=0;
        dfn=ED=0;
        dfs2(1,0);
    }
    for(i=1;i<=n;i++)fa[i]=i,c[i][d[i]]=1;
    for(i=2;i<=n;i++)if(gg[i]==i)merge(i,f[i]);
    printf("%lld %lld",ans[0],ans[1]);
}
/*
4 3
1 2
1 3
1 4


4 4
1 2
2 3
3 4
4 2


5 6
1 2
2 3
3 4
4 5
1 4
3 5

4 5
1 2
1 3
2 4
3 4
2 3


6 8
1 2
1 3
2 4
3 4
3 5
4 5
4 6
5 6
*/

  

D. Great Again

设$f[i]$表示前$i$个人分组的最大得分,枚举当前段的得分,线段树优化转移即可。

时间复杂度$O(n\log n)$。

#include<cstdio>
#include<algorithm>
#include<vector>
#include<set>
using namespace std;
const int N=300010,M=2222222;
int n,m,j,L,R,i,lim,tmp,a[N],f[N];
int v[M];
multiset<int>T[N*2];
void build(int x,int a,int b){
    v[x]=-M;
    if(a==b)return;
    int mid=(a+b)>>1;
    build(x<<1,a,mid),build(x<<1|1,mid+1,b);
}
inline void up(int x){v[x]=max(v[x<<1],v[x<<1|1]);}
void ins(int x,int a,int b,int c,int p){
    if(a==b){
        T[a].insert(p);
        v[x]=*T[a].rbegin();
        return;
    }
    int mid=(a+b)>>1;
    if(c<=mid)ins(x<<1,a,mid,c,p);
    else ins(x<<1|1,mid+1,b,c,p);
    up(x);
}
void del(int x,int a,int b,int c,int p){
    if(a==b){
        T[a].erase(T[a].find(p));
        if(T[a].empty())v[x]=-M;else
        v[x]=*T[a].rbegin();
        return;
    }
    int mid=(a+b)>>1;
    if(c<=mid)del(x<<1,a,mid,c,p);
    else del(x<<1|1,mid+1,b,c,p);
    up(x);
}
int ask(int x,int a,int b,int c,int d){
    if(c<=a&&b<=d)return v[x];
    int mid=(a+b)>>1,t=-M;
    if(c<=mid)t=ask(x<<1,a,mid,c,d);
    if(d>mid)t=max(t,ask(x<<1|1,mid+1,b,c,d));
    return t;
}
int main(){
    scanf("%d%d%d",&n,&L,&R);
    for(i=1;i<=n;i++){
        scanf("%d",&a[i]);
        a[i]+=a[i-1];
    }
    m=n+n;
    for(i=0;i<=n;i++)a[i]+=n;//0..m
    build(1,0,m);
    for(i=1,j=0;i<=n;i++){
        if(i>=L)ins(1,0,m,a[i-L],f[i-L]);
        if(i-R-1>=0)del(1,0,m,a[i-R-1],f[i-R-1]);
        f[i]=ask(1,0,m,a[i],a[i]);
        if(a[i]>0)f[i]=max(f[i],ask(1,0,m,0,a[i]-1)+1);
        if(a[i]<m)f[i]=max(f[i],ask(1,0,m,a[i]+1,m)-1);
        //printf("f[%d]=%d\n",i,f[i]);
    }
    if(f[n]<-M/2)puts("Impossible");else printf("%d",f[n]);
}

  

E. Jumping is Fun

每个点不管跳多少步,能到达的范围必然是一个区间。

设$f[i][j]$表示$j$点跳$2^i$步能到的范围,可以用线段树求出。

从高到低枚举答案的二进制的每一位,利用$f$数组求出范围,然后枚举$x$,判断是否存在$y$满足$x$与$y$都不能相互到达即可。

时间复杂度$O(n\log^2n)$。

#include<cstdio>
#include<algorithm>
using namespace std;
const int N=200010,M=530000,K=18;
int n,i,j,x,pre[N],suf[N],ans;
struct P{
    int x,y;
    P(){}
    P(int _x,int _y){x=_x,y=_y;}
    P operator+(const P&b){return P(min(x,b.x),max(y,b.y));}
}f[K][N],v[K][M],a[N],b[N];
void build(int o,int x,int a,int b){
    if(a==b){
        v[o][x]=f[o][a];
        return;
    }
    int mid=(a+b)>>1;
    build(o,x<<1,a,mid),build(o,x<<1|1,mid+1,b);
    v[o][x]=v[o][x<<1]+v[o][x<<1|1];
}
P ask(int o,int x,int a,int b,int c,int d){
    if(c<=a&&b<=d)return v[o][x];
    int mid=(a+b)>>1;
    P t(N,1);
    if(c<=mid)t=ask(o,x<<1,a,mid,c,d);
    if(d>mid)t=t+ask(o,x<<1|1,mid+1,b,c,d);
    return t;
}
inline P go(int o,P b){
    //if(b.x<1||b.y>n)puts("ERROR");
    return ask(o,1,1,n,b.x,b.y);
}
inline bool check(int o){
  //printf("now check %d\n",o);
    int i;
    for(i=1;i<=n;i++)b[i]=go(o,a[i]);
    pre[0]=N;
    for(i=1;i<=n;i++)pre[i]=min(pre[i-1],b[i].y);
    suf[n+1]=0;
    for(i=n;i;i--)suf[i]=max(suf[i+1],b[i].x);
    for(i=1;i<=n;i++){
        if(pre[b[i].x-1]<i){
            //printf("to pre x=%d pre[%d]=%d\n",i,b[i].x-1,pre[b[i].x-1]);
            return 1;
        }
        if(suf[b[i].y+1]>i){
            //printf("to suf x=%d\n",i);
            return 1;
        }
    }
    return 0;
}
int main(){
    scanf("%d",&n);
    for(i=1;i<=n;i++){
        scanf("%d",&x);
        f[0][i].x=max(1,i-x);
        f[0][i].y=min(n,i+x);
    }
    build(0,1,1,n);
    for(i=1;i<K;i++){
        for(j=1;j<=n;j++){
            f[i][j]=go(i-1,f[i-1][j]);
            //printf("f[%d][%d]=%d %d\n",i,j,f[i][j].x,f[i][j].y);
        }
        build(i,1,1,n);
    }
    for(i=1;i<=n;i++){
        a[i]=P(i,i);
        //printf("->%d %d %d\n",i,a[i].x,a[i].y);
    }
    for(i=K-1;~i;i--){
        if(check(i)){
            //printf("checkok %d\n",i);
            //for(j=1;j<=n;j++)printf("a[%d]=%d %d\n",j,a[j].x,a[j].y);
            for(j=1;j<=n;j++)a[j]=b[j];
            //for(j=1;j<=n;j++)printf("b[%d]=%d %d\n",j,a[j].x,a[j].y);
            ans|=1<<i;
        }
    }
    printf("%d",ans+1);
}
/*
8
7 1 1 1 1 1 1 7

10
2 2 1 2 2 1 2 2 1 2
*/

  

F. Online LCS

将两个串插入同一个后缀自动机,同时维护$v[i][j]$表示节点$i$表示的子串集合是否在串$j$中出现过。

每次加入新的字符的时候,将对应节点到根路径上所有$v$都标记为$1$,当$v[i][0]$与$v[i][1]$同时为$1$时,可以用它的最大长度去更新最长公共子串的长度。

注意到每个点在每种串中只需要被标记一次,故发现标记过则退出即可。

时间复杂度$O(n)$。

#include<cstdio>
#include<cstring>
const int N=5000010;//5e6
int tot=1,last[2]={1,1},pre[N*2],son[N*2][2],ml[N*2];bool v[N*2][2];
int n,i,ans;long long sum;char a[N];
inline void extend(int o,int w){
  int p=++tot,x=last[o],r,q;
  for(ml[last[o]=p]=ml[x]+1;x&&!son[x][w];x=pre[x])son[x][w]=p;
  if(!x)pre[p]=1;
  else if(ml[x]+1==ml[q=son[x][w]])pre[p]=q;
  else{
    pre[r=++tot]=pre[q];memcpy(son[r],son[q],sizeof son[r]);
    v[r][0]=v[q][0];
    v[r][1]=v[q][1];
    ml[r]=ml[x]+1;pre[p]=pre[q]=r;
    for(;x&&son[x][w]==q;x=pre[x])son[x][w]=r;
  }
  while(p&&!v[p][o]){
    v[p][o]=1;
    if(v[p][o^1]&&ml[p]>ans)ans=ml[p];
    p=pre[p];
  }
}
int main(){
  scanf("%d%s",&n,a);
  for(i=0;i<n;i++){
    extend(((a[i]-'0')^ans)&1,(((a[i]-'0')^ans)/2)&1);
    sum+=ans;
  }
  printf("%lld",sum);
}
/*
5
0 0
0 1
1 0
1 0
1 1
*/

  

G. Brawling

只有左侧朝左的若干人以及右侧朝右的若干人不能保留。

#include<stdio.h>
#include<iostream>
#include<string.h>
#include<string>
#include<ctype.h>
#include<math.h>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<bitset>
#include<algorithm>
#include<time.h>
using namespace std;
void fre() { freopen("c://test//input.in", "r", stdin); freopen("c://test//output.out", "w", stdout); }
#define MS(x, y) memset(x, y, sizeof(x))
#define ls o<<1
#define rs o<<1|1
typedef long long LL;
typedef unsigned long long UL;
typedef unsigned int UI;
template <class T1, class T2>inline void gmax(T1 &a, T2 b) { if (b > a)a = b; }
template <class T1, class T2>inline void gmin(T1 &a, T2 b) { if (b < a)a = b; }
const int N = 1e6 + 10, M = 0, Z = 1e9 + 7, inf = 0x3f3f3f3f;
template <class T1, class T2>inline void gadd(T1 &a, T2 b) { a = (a + b) % Z; }
int casenum, casei;
char s[N];
int n;
int solve()
{
    int l = 1;
    while(l <= n && s[l] != 'R')++l;

    int r = n;
    while(r >= 1 && s[r] != 'L')--r;

    //a[l] = 'L', a[r] = 'R'
    if(l < r)
    {
        int sub = r - l + 1 - 1;
        return n - sub;
    }
    else
    {
        return n;
    }
}
int main()
{
	while(~scanf("%s", s + 1))
	{
	    n = strlen(s + 1);
        printf("%d\n", solve());
	}

	return 0;
}
/*
【trick&&吐槽】


【题意】


【分析】


【时间复杂度&&优化】


*/

  

H. I Spy

随机选择一个点$P=(x,y)$,在附近找一个辅助点$Q=(x+1,y)$。

因为随机选择,故可以认为对于$P$和$Q$,没有任意两个点离它们的距离相同。

二分半径求出离$P$和$Q$最近的两个点到它们的距离$R_1,R_2$,得到两个圆,在交点附近检查是否存在点即可。

如此反复,即可找出所有点的位置。

#include<stdio.h>
#include<iostream>
#include<string.h>
#include<string>
#include<ctype.h>
#include<math.h>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<bitset>
#include<algorithm>
#include<time.h>
using namespace std;
void fre() { freopen("c://test//input.in", "r", stdin); freopen("c://test//output.out", "w", stdout); }
#define MS(x, y) memset(x, y, sizeof(x))
#define ls o<<1
#define rs o<<1|1
typedef long long LL;
typedef unsigned long long UL;
typedef unsigned int UI;
template <class T1, class T2>inline void gmax(T1 &a, T2 b) { if (b > a)a = b; }
template <class T1, class T2>inline void gmin(T1 &a, T2 b) { if (b < a)a = b; }
const int N = 0, M = 0, Z = 1e9 + 7, inf = 0x3f3f3f3f;
template <class T1, class T2>inline void gadd(T1 &a, T2 b) { a = (a + b) % Z; }
int casenum, casei;
int n;
LL X0, Y0;
LL X1, Y1;
set< pair<LL, LL> >know;
LL sqr(LL X)
{
	return X * X;
}
bool IN(LL X0, LL Y0, LL X1, LL Y1, LL R)
{
	return sqr(X0 - X1) + sqr(Y0 - Y1) <= R;
}
bool check(LL X, LL Y, LL R)
{
	printf("? %lld %lld %lld\n", X, Y, R);
	fflush(stdout);
	int num;
	scanf("%d", &num);
	for (auto it : know)
	{
		if (IN(it.first, it.second, X, Y, R))--num;
	}
	return num;
}
LL GETR(LL X, LL Y)
{
	LL L = 0;
	LL R = 1e13;
	while (L < R)
	{
		LL MID = (L + R >> 1);
		if (check(X, Y, MID))R = MID;
		else L = MID + 1;
	}
	return L;
}

namespace YUAN
{
	struct point
	{
		double x, y;
		point() {}
		point(double a, double b) : x(a), y(b) {}
		friend point operator + (const point &a, const point &b) {
			return point(a.x + b.x, a.y + b.y);
		}
		friend point operator - (const point &a, const point &b) {
			return point(a.x - b.x, a.y - b.y);
		}
		friend point operator * (const point &a, const double &b) {
			return point(a.x * b, a.y * b);
		}
		friend point operator * (const double a, const point &b) {
			return point(a * b.x, a * b.y);
		}
		friend point operator / (const point &a, const double &b) {
			return point(a.x / b, a.y / b);
		}
		double norm() {
			return sqrt(sqr(x) + sqr(y));
		}
	};

	point rotate(const point &p, double cost, double sint)
	{
		double x = p.x, y = p.y;
		return point(x * cost - y * sint, x * sint + y * cost);
	}
	// 圆与圆求交, ap,bp 两个圆的圆心, ar,br 两个圆的半径。 输出两个交点(要先确认两圆存在交点)
	pair<point, point> crosspoint(point ap, double ar, point bp, double br)
	{
		double d = (ap - bp).norm();
		double cost = (ar * ar + d * d - br * br) / (2 * ar * d);
		double sint = sqrt(1. - cost * cost);
		point v = (bp - ap) / (bp - ap).norm() * ar;
		return make_pair(ap + rotate(v, cost, -sint), ap + rotate(v, cost, sint));
	}
}using namespace YUAN;

void check_ans(LL X, LL Y)
{
	for (int i = -2; i <= 2; ++i)
	{
		for (int j = -2; j <= 2; ++j)
		{
			LL x = X + i;
			LL y = Y + j;
			if (abs(x) > 1e6 || abs(y) > 1e6)continue;
			if (check(x, y, 0))
			{
				know.insert({ x,y });
			}
		}
	}
}
int main()
{
	X0 = rand() * rand() % 900000;
	Y0 = rand() * rand() % 900000;
	X1 = X0;
	Y1 = Y0 + 1;

	scanf("%d", &n);
	while (know.size() < n)
	{
		LL R0 = GETR(X0, Y0);
		LL R1 = GETR(X1, Y1);

		pair<point, point>ans = crosspoint({ 1.0*X0,1.0*Y0 }, sqrt(R0), { 1.0*X1,1.0*Y1 }, sqrt(R1));

		check_ans(ans.first.x, ans.first.y);
		check_ans(ans.second.x, ans.second.y);
	}
	printf("!");
	for (auto it : know)
	{
		printf(" %lld %lld", it.first, it.second);
	}
	puts("");
	fflush(stdout);
	return 0;
}
/*
【trick&&吐槽】


【题意】


【分析】


【时间复杂度&&优化】


【数据】


*/

  

I. Rage Minimum Query

若修改是往小修改,那么显然可以$O(1)$直接更新全局最小值。

否则若目前是将最小值往大了修改,那么这是小概率事件,直接$O(n)$重算全局最小值即可。

#include<cstdio>
typedef unsigned int U;
int n,q;
U x0,x1,a,b,c,i,x,v[10000010],mi,ans,p=1;
inline U nxt(){
    U t=x0*a+x1*b+c;
    x0=x1;
    x1=t;
    return x0>>2;
}
int main(){
    scanf("%d%d%u%u%u%u%u",&n,&q,&x0,&x1,&a,&b,&c);
    for(i=0;i<n;i++)v[i]=~0U>>1;
    mi=~0U>>1;
    while(q--){
        i=nxt()%n;
        x=nxt();
        if(x<=v[i]){
            if(x<mi)mi=x;
            v[i]=x;
        }else if(v[i]>mi){
            v[i]=x;
        }else{
            v[i]=x;
            mi=x;
            for(i=0;i<n;i++)if(v[i]<mi)mi=v[i];
        }
        p*=10099;
        ans+=p*mi;
    }
    printf("%u",ans);
}

  

J. Regular Cake

在正$n$边形与正$m$边形之间紧贴一个正$lcm(n,m)$边形,可以得到答案为:

\[\frac{\cos\left(\frac{\pi}{lcm(n,m)}\right)\tan\left(\frac{\pi}{m}\right)}{\sin\left(\frac{\pi}{n}\right)}\]

#include<cstdio>
#include<cmath>
typedef long long ll;
using namespace std;
const double pi=acos(-1.0);
ll n,m,k;
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
int main(){
    scanf("%lld%lld",&n,&m);
    k=n*m/gcd(n,m);
    printf("%.13f",cos(pi/k)*tan(pi/m)/sin(pi/n));
}

  

K. Piecemaking

树形DP,设$f[i][j]$表示考虑$i$的子树,$i$点颜色为$j$的最小代价。

时间复杂度$O(n)$。

#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=200010;
const ll inf=1LL<<60;
int n,m,i,x,y,z,g[N],v[N<<1],w[N<<1],nxt[N<<1],ed;
int col[N];
ll f[N][3],h[3],ans;
inline void up(ll&a,ll b){a>b?(a=b):0;}
inline void add(int x,int y,int z){v[++ed]=y;w[ed]=z;nxt[ed]=g[x];g[x]=ed;}
void dfs(int x,int y){
    for(int i=0;i<3;i++)f[x][i]=inf;
    f[x][col[x]]=0;
    for(int i=g[x];i;i=nxt[i]){
        int u=v[i];
        if(u==y)continue;
        dfs(u,x);
        for(int j=0;j<3;j++)h[j]=inf;
        for(int j=0;j<3;j++)if(f[x][j]<inf)for(int k=0;k<3;k++)if(f[u][k]<inf){
            //cut
            up(h[j],f[x][j]+f[u][k]+w[i]);
            //merge
            if(j&&k&&j!=k)continue;
            up(h[max(j,k)],f[x][j]+f[u][k]);
        }
        for(int j=0;j<3;j++)f[x][j]=h[j];
    }
}
int main(){
    scanf("%d",&n);
    for(i=1;i<n;i++)scanf("%d%d%d",&x,&y,&z),add(x,y,z),add(y,x,z);
    scanf("%d",&m);
    while(m--)scanf("%d",&x),col[x]=1;
    scanf("%d",&m);
    while(m--)scanf("%d",&x),col[x]=2;
    dfs(1,0);
    ans=inf;
    for(i=0;i<3;i++)up(ans,f[1][i]);
    printf("%lld",ans);
}
/*
6
1 2 5
2 4 4
2 5 1
1 3 2
3 6 7
1 4
2 5 6
*/

  

posted @ 2017-09-13 00:59  Claris  阅读(1078)  评论(0编辑  收藏  举报