BZOJ2911 : [Poi1997]The Number of Symmetrical Choices

新建源汇S,T,根据题意可以建出一个DAG

设f[x][y]为从x走到y的回文路径的方案数,则

边界条件:

f[x][x]=1

对于一条边x->y,若a[x]==a[y],则f[x][y]=1

 

转移方程为:

若a[x]==a[y],则f[x][y]=sum(f[i][j])(x->i有边,j->y有边)

若a[x]!=a[y],则f[x][y]=0


最终答案即为f[S][T],时间复杂度$O(L^2)$。

 

#include<cstdio>
#include<cstring>
#define N 410
int n,m,i,j,k,l,a[N],st[2][N],en[2][N],v[N][N],f[N][N];char s[N];
struct E{int v;E*nxt;}*g[N],*h[N],pool[2000],*cur=pool;
inline void add(int x,int y){
  E*p=cur++;p->v=y;p->nxt=g[x];g[x]=p;
  p=cur++;p->v=x;p->nxt=h[y];h[y]=p;
}
int F(int x,int y){
  if(v[x][y])return f[x][y];
  v[x][y]=1;
  if(a[x]!=a[y])return 0;
  for(E*p=g[x];p;p=p->nxt)for(E*q=h[y];q;q=q->nxt)f[x][y]+=F(p->v,q->v);
  return f[x][y];
}
int main(){
  scanf("%d",&n),m=2;
  for(k=0;k<2;k++)for(i=1;i<=n;i++){
    st[k][i]=m+1;
    for(scanf("%s",s+1),l=std::strlen(s+1),j=1;j<l;j++)add(m+j,m+j+1);
    for(j=1;j<=l;j++)a[m+j]=s[j]-'a'+1;
    en[k][i]=m+=l;
  }
  for(i=1;i<n;i++){
    add(en[0][i],st[0][i+1]);
    add(en[0][i],st[1][i+1]);
    add(en[1][i],st[0][i+1]);
    add(en[1][i],st[1][i+1]);
  }
  add(1,st[0][1]);
  add(1,st[1][1]);
  add(en[0][n],2);
  add(en[1][n],2);
  for(i=1;i<=m;i++){
    v[i][i]=f[i][i]=1;
    for(E*p=g[i];p;p=p->nxt){
      v[i][p->v]=1;
      if(a[i]==a[p->v])f[i][p->v]=1;
    }
  }
  return printf("%d",F(1,2)),0;
}

  

posted @ 2015-08-07 20:45  Claris  阅读(438)  评论(0编辑  收藏  举报