【SPOJ】QTREE7(Link-Cut Tree)
【SPOJ】QTREE7(Link-Cut Tree)
题面
题解
和QTREE6的本质是一样的:维护同色联通块
那么,QTREE6同理,对于两种颜色分别维护一棵\(LCT\)
每次只修改和它父亲的连边。
考虑如何维护最大值
因为每次\(access\)会删去一个数,所以我们肯定不能够只维护最大值。
因此,对于每一个节点,额外维护一个\(multiset\)(当然,可删堆,\(map\)之类的也行)
每次用\(multiset\)维护虚子树的最值,拿过去更新即可。
最后的答案和QTREE6是一样的,
找到这个联通块的最浅父亲,维护一下子树最值就行啦。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 111111
#define ls (t[x].ch[0])
#define rs (t[x].ch[1])
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int W[MAX];
struct Link_Cut_Tree
{
struct Node
{
int ch[2],ff;
int mx;
multiset<int> S;
}t[MAX];
bool isroot(int x){return t[t[x].ff].ch[0]!=x&&t[t[x].ff].ch[1]!=x;}
void pushup(int x)
{
t[x].mx=max(max(t[ls].mx,t[rs].mx),W[x]);
if(!t[x].S.empty())t[x].mx=max(t[x].mx,*t[x].S.rbegin());
}
void rotate(int x)
{
int y=t[x].ff,z=t[y].ff;
int k=t[y].ch[1]==x;
if(!isroot(y))t[z].ch[t[z].ch[1]==y]=x;t[x].ff=z;
t[y].ch[k]=t[x].ch[k^1];t[t[x].ch[k^1]].ff=y;
t[x].ch[k^1]=y;t[y].ff=x;
pushup(y);pushup(x);
}
void Splay(int x)
{
while(!isroot(x))
{
int y=t[x].ff,z=t[y].ff;
if(!isroot(y))
(t[y].ch[0]==x)^(t[z].ch[0]==y)?rotate(x):rotate(y);
rotate(x);
}
pushup(x);
}
void access(int x)
{
for(int y=0;x;y=x,x=t[x].ff)
{
Splay(x);
if(rs)t[x].S.insert(t[rs].mx);
rs=y;
if(rs)t[x].S.erase(t[rs].mx);
pushup(x);
}
}
int findroot(int x){access(x);Splay(x);while(ls)x=ls;Splay(x);return x;}
void link(int x,int y){if(!y)return;access(y);Splay(y);Splay(x);t[x].ff=y;t[y].ch[1]=x;pushup(y);}
void cut(int x,int y){if(!y)return;access(x);Splay(x);ls=t[ls].ff=0;pushup(x);}
}LCT[2];
struct Line{int v,next;}e[MAX<<1];
int h[MAX],cnt=1,fa[MAX],n,Q,c[MAX];
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;}
void dfs(int u,int ff)
{
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;if(v==ff)continue;
fa[v]=u;LCT[c[v]].link(v,u);dfs(v,u);
}
}
int main()
{
n=read();
for(int i=1,u,v;i<n;++i)u=read(),v=read(),Add(u,v),Add(v,u);
for(int i=1;i<=n;++i)c[i]=read();
for(int i=1;i<=n;++i)W[i]=read();
LCT[0].t[0].mx=LCT[1].t[0].mx=-2e9;
dfs(1,0);Q=read();
while(Q--)
{
int opt=read(),u=read();
if(opt==0)
{
int ff=LCT[c[u]].findroot(u);
if(c[u]==c[ff])printf("%d\n",LCT[c[u]].t[ff].mx);
else printf("%d\n",LCT[c[u]].t[LCT[c[u]].t[ff].ch[1]].mx);
}
else if(opt==1)LCT[c[u]].cut(u,fa[u]),c[u]^=1,LCT[c[u]].link(u,fa[u]);
else
{
LCT[c[u]].access(u);LCT[c[u]].Splay(u);
W[u]=read();LCT[c[u]].pushup(u);
}
}
return 0;
}