Bzoj1009: [HNOI2008]GT考试
题面
Sol
设\(f[i][j]\)表示到第\(i\)个数,最后\(j\)个为不吉利数字的前缀的方案数
于是就可以写一个\(KMP\)套暴力\(DP\)跳\(next\)转移
# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
IL ll Read(){
RG ll x = 0, z = 1; RG char c = getchar();
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
}
int n, m, k, f[101010][30], nxt[30], ans;
char s[30];
int main(RG int argc, RG char* argv[]){
n = Read(); m = Read(); k = Read();
scanf(" %s", s + 1);
for(RG int i = 2, j = 0; i <= m; ++i){
while(j && s[i] != s[j + 1]) j = nxt[j];
if(s[i] == s[j + 1]) nxt[i] = ++j;
}
f[0][0] = 1;
for(RG int i = 1; i <= n; ++i)
for(RG int j = 0; j < m; ++j){
if(!f[i - 1][j]) continue;
for(RG int l = '0'; l <= '9'; ++l){
RG int p = j;
while(p && l != s[p + 1]) p = nxt[p];
if(s[p + 1] == l) ++p;
f[i][p] = (f[i][p] + f[i - 1][j] % k) % k;
}
}
for(RG int i = 0; i < m; ++i) ans = (ans + f[n][i]) % k;
printf("%d\n", ans);
return 0;
}
我们发现转移是一样的,预处理出来,\(n\)这么大那就矩阵乘法优化一下
# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
IL ll Read(){
RG ll x = 0, z = 1; RG char c = getchar();
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
}
int n, m, k, nxt[30], ans;
char s[30];
struct Matrix{
int a[30][30];
IL void Clear(){ Fill(a, 0); }
IL void Init(){ Clear(); for(RG int i = 0; i < m; ++i) a[i][i] = 1; }
IL int* operator [](RG int x){ return a[x]; }
IL Matrix operator *(RG Matrix B){
RG Matrix C; C.Clear();
for(RG int i = 0; i < m; ++i)
for(RG int j = 0; j < m; ++j)
for(RG int l = 0; l < m; ++l)
(C[i][l] += (1LL * a[i][j] * B[j][l] % k)) %= k;
return C;
}
} S, E;
int main(RG int argc, RG char* argv[]){
n = Read(); m = Read(); k = Read();
scanf(" %s", s + 1);
for(RG int i = 2, j = 0; i <= m; ++i){
while(j && s[i] != s[j + 1]) j = nxt[j];
if(s[i] == s[j + 1]) nxt[i] = ++j;
}
for(RG int i = 0; i < m; ++i)
for(RG int j = '0'; j <= '9'; ++j){
RG int p = i;
while(p && j != s[p + 1]) p = nxt[p];
if(s[p + 1] == j) ++p;
++E[i][p];
}
S[0][0] = 1;
for(RG int i = n; i; i >>= 1, E = E * E) if(i & 1) S = S * E;
for(RG int i = 0; i < m; ++i) ans = (ans + S[0][i]) % k;
printf("%d\n", ans);
return 0;
}