[POJ1784]Huffman's Greed

题面在这里

题意

给出一棵\(n\)个节点的二叉查找树的中序遍历中每个节点的访问次数\(p[i]\),和相邻两节点\(i\)\(i+1\)的访问次数\(q[i]\),构造一棵二叉查找树使得\(\sum_{i=1}^{n}d[i](s[i]+1)+\sum_{i=0}^{n}(max(d[i],d[i+1])+1)[即查询两者之间值的实际比较次数]\times(q[i])\)最小,输出这个最小值

数据范围

\[n\le 200,多组数据(T很小) \]

sol

利用树的递归定义,设\(f[i][j]\)表示\([l,r]\)内节点合并为一棵树的时候的答案,再根据叶子情况进行讨论,可以得到\(O(Tn^3)\)的DP,其中主要部分是

\[f[i][j]=\min_{k=i}^{k=j}{(f[i][k-1]+f[k+1][j])+\sum_{l=i}^{j}p[l]+\sum_{l=i-1}^{j}q[l]} \]

(这里定义\(f[i][i-1]=f[j+1][j]=0\))
可以看到转移方程实际和\(p,q\)无关(其实这明摆着就是最优排序二叉树问题)

而这样做是会T的,然而其实上面的转移式和石子合并的转移式比较类似,于是可以通过类似的方法得出其也满足\(s[i][j-1]\le s[i][j]\le s[i+1][j]\)的性质,于是就可以AC了

代码

#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#define RG register
using namespace std;
typedef long long ll;
const int N=405;
ll n,p[N],q[N],f[N][N],s[N][N];
int main()
{
	while(scanf("%lld",&n)==1){
		if(!n)break;
		for(RG int i=1;i<=n;i++)scanf("%lld",&p[i]),p[i]+=p[i-1];
		for(RG int i=0;i<=n;i++)scanf("%lld",&q[i]),q[i]+=q[i-1];
		memset(f,63,sizeof(f));
		for(RG int i=1;i<=n;i++){
			f[i][i]=q[i]+p[i]-p[i-1];
			s[i][i]=i;
			if(i>=2)f[i][i]-=q[i-2];
		}
		for(RG int i=1;i<=n+1;i++)f[i][i-1]=0;
		for(RG int l=2;l<=n;l++)
			for(RG int i=1;l+i-1<=n;i++)
				for(RG int k=s[i][i+l-2];k<=s[i+1][i+l-1];k++)
					if(i>=2){
						f[i][l+i-1]=min(f[i][l+i-1],f[i][k-1]+f[k+1][l+i-1]+p[l+i-1]-p[i-1]+q[l+i-1]-q[i-2]);
						if(f[i][l+i-1]==f[i][k-1]+f[k+1][l+i-1]+p[l+i-1]-p[i-1]+q[l+i-1]-q[i-2])s[i][l+i-1]=k;
					}
					else {
						f[i][l+i-1]=min(f[i][l+i-1],f[i][k-1]+f[k+1][l+i-1]+p[l+i-1]-p[i-1]+q[l+i-1]);
						if(f[i][l+i-1]==f[i][k-1]+f[k+1][l+i-1]+p[l+i-1]-p[i-1]+q[l+i-1])s[i][l+i-1]=k;
					}
		printf("%lld\n",f[1][n]);
	}
	return 0;
}
posted @ 2018-03-21 21:02  cjfdf  阅读(229)  评论(0编辑  收藏  举报