大数据/数据挖掘/推荐系统/机器学习相关资源Share my personal resources 视频大数据视频以及讲义http://pan.baidu.com/share/link?shareid=3860301827&uk=3978262348 浙大数据挖掘系列http://v.youku.com/v_show/id_XNTgzNDYzMjg=.html?f=2740765 用Python做科学计算http://www.tudou.com/listplay/fLDkg5e1pYM.html R语言视频http://pan.baidu.com/s/1koSpZ Hadoop视频http://pan.baidu.com/s/1b1xYd 42区 . 技术 . 创业 . 第二讲http://v.youku.com/v_show/id_XMzAyMDYxODUy.html 加州理工学院公开课:机器学习与数据挖掘http://v.163.com/special/opencourse/learningfromdata.html 书籍各种书~各种ppt~更新中~http://pan.baidu.com/s/1EaLnZ 机器学习经典书籍小结http://www.cnblogs.com/snake-hand/archive/2013/06/10/3131145.html QQ群机器学习&模式识别 246159753 数据挖掘机器学习 236347059 推荐系统 274750470 博客推荐系统周涛 http://blog.sciencenet.cn/home.php?mod=space&uid=3075 Greg Linden http://glinden.blogspot.com/ Marcel Caraciolo http://aimotion.blogspot.com/ ResysChina http://weibo.com/p/1005051686952981 推荐系统人人小站 http://zhan.renren.com/recommendersystem 阿稳 http://www.wentrue.net 梁斌 http://weibo.com/pennyliang ***瑞 http://diaorui.net guwendong http://www.guwendong.com xlvector http://xlvector.net 懒惰啊我 http://www.cnblogs.com/flclain/ free mind http://blog.pluskid.org/ lovebingkuai http://lovebingkuai.diandian.com/ LeftNotEasy http://www.cnblogs.com/LeftNotEasy LSRS 2013 http://graphlab.org/lsrs2013/program/ Google小组 https://groups.google.com/forum/#!forum/resys 机器学习Journal of Machine Learning Research http://jmlr.org/ 信息检索清华大学信息检索组 http://www.thuir.cn 自然语言处理我爱自然语言处理 http://www.52nlp.cn/test Github推荐系统推荐系统开源软件列表汇总和评点 http://in.sdo.com/?p=1707 Mrec(Python) https://github.com/mendeley/mrec Crab(Python) https://github.com/muricoca/crab Python-recsys(Python) https://github.com/ocelma/python-recsys CofiRank(C++) https://github.com/markusweimer/cofirank GraphLab(C++) https://github.com/graphlab-code/graphlab EasyRec(Java) https://github.com/hernad/easyrec Lenskit(Java) https://github.com/grouplens/lenskit Mahout(Java) https://github.com/apache/mahout Recommendable(Ruby) https://github.com/davidcelis/recommendable 文章机器学习
推荐系统
- Netflix 推荐系统:第一部分 http://blog.csdn.net/bornhe/article/details/8222450
- Netflix 推荐系统:第二部分 http://blog.csdn.net/bornhe/article/details/8222497
- 探索推荐引擎内部的秘密 http://www.ibm.com/developerworks/cn/web/1103_zhaoct_recommstudy1/index.html
- 推荐系统resys小组线下活动见闻2009-08-22 http://www.tuicool.com/articles/vUvQVn
- Recommendation Engines Seminar Paper, Thomas Hess, 2009: 推荐引擎的总结性文章http://www.slideshare.net/antiraum/recommender-engines-seminar-paper
- Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions, Adomavicius, G.; Tuzhilin, A., 2005 http://dl.acm.org/citation.cfm?id=1070751
- A Taxonomy of RecommenderAgents on the Internet, Montaner, M.; Lopez, B.; de la Rosa, J. L., 2003http://www.springerlink.com/index/KK844421T5466K35.pdf
- A Course in Machine Learning http://ciml.info/
- 基于mahout构建社会化推荐引擎 http://www.doc88.com/p-745821989892.html
- 个性化推荐技术漫谈 http://blog.csdn.net/java060515/archive/2007/04/19/1570243.aspx
- Design of Recommender System http://www.slideshare.net/rashmi/design-of-recommender-systems
- How to build a recommender system http://www.slideshare.net/blueace/how-to-build-a-recommender-system-presentation
- 推荐系统架构小结 http://blog.csdn.net/idonot/article/details/7996733
- System Architectures for Personalization and Recommendation http://techblog.netflix.com/2013/03/system-architectures-for.html
- The Netflix Tech Blog http://techblog.netflix.com/
- 百分点推荐引擎——从需求到架构http://www.infoq.com/cn/articles/baifendian-recommendation-engine
- 推荐系统 在InfoQ上的内容 http://www.infoq.com/cn/recommend
- 推荐系统实时化的实践和思考 http://www.infoq.com/cn/presentations/recommended-system-real-time-practice-thinking
- 质量保证的推荐实践 http://www.infoq.com/cn/news/2013/10/testing-practice/
- 推荐系统的工程挑战 http://www.infoq.com/cn/presentations/Recommend-system-engineering
- 社会化推荐在人人网的应用 http://www.infoq.com/cn/articles/zyy-social-recommendation-in-renren/
- 利用20%时间开发推荐引擎 http://www.infoq.com/cn/presentations/twenty-percent-time-to-develop-recommendation-engine
- 使用Hadoop和 Mahout实现推荐引擎 http://www.jdon.com/44747
- SVD 简介 http://www.cnblogs.com/FengYan/archive/2012/05/06/2480664.html
- Netflix推荐系统:从评分预测到消费者法则 http://blog.csdn.net/lzt1983/article/details/7696578
- 《推荐系统实践》的Reference
-
|
|