君子博学而日参省乎己 则知明而行无过矣

博客园 首页 新随笔 联系 订阅 管理

人类学习的方式在很大程度上始于模仿,“古者包犠氏之王天下也……作结绳而为网罟,以佃以渔,盖取诸离”,古人从自然法则中求生存,逐步走出蒙昧,人法地,地法天,天法道,道法自然。(历代对本句训诂汗牛充栋,还不如本人的解释来得直接 ,顺便鄙视一下那些训诂专家,小题大做,愚不可及)

而本文要描述的是,先来模仿几个hadoop的example,以增强hadoop编程的感悟能力

从下面几个example可以增强理解MapReduce的具体处理过程,包括输入输出的类型以及shuffle的功能

1 数据去重

public class Dedup {
    
    //map将输入中的value复制到输出数据的key上,并直接输出
    public static class Map extends Mapper<Object,Text,Text,Text>{
        private static Text line=new Text();//每行数据       

        //实现map函数
        public void map(Object key,Text value,Context context)
                throws IOException,InterruptedException{
            line=value;
            context.write(line, new Text(""));
        }
    }   

    //reduce将输入中的key复制到输出数据的key上,并直接输出
    public static class Reduce extends Reducer<Text,Text,Text,Text>{
        //实现reduce函数
        public void reduce(Text key,Iterable<Text> values,Context context)
                throws IOException,InterruptedException{
            context.write(key, new Text(""));
        }
    }

    /**
     * @param args
     */
    public static void main(String[] args) throws Exception {        
        // TODO Auto-generated method stub
        Configuration conf = new Configuration();        

        String[] ioArgs=new String[]{"dedup_in","dedup_out"};
        String[] otherArgs = new GenericOptionsParser(conf, ioArgs).getRemainingArgs();
        if (otherArgs.length != 2) 
        {
            System.err.println("Usage: Data Deduplication <in> <out>");
            System.exit(2);
        }
        
        Job job = new Job(conf, "Data Deduplication");
        job.setJarByClass(Dedup.class);         

        //设置Map、Combine和Reduce处理类
        job.setMapperClass(Map.class);
        job.setCombinerClass(Reduce.class);
        job.setReducerClass(Reduce.class);         

        //设置输出类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);         

        //设置输入和输出目录
        FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
        FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
        
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}

2  数据排序

public class Sort {

    // map将输入中的value化成IntWritable类型,作为输出的key
    public static class Map extends
            Mapper<Object, Text, IntWritable, IntWritable> {

        private static IntWritable data = new IntWritable();

        // 实现map函数
        public void map(Object key, Text value, Context context)
                throws IOException, InterruptedException {
            String line = value.toString();
            data.set(Integer.parseInt(line));
            context.write(data, new IntWritable(1));
        }
    }

    // reduce将输入中的key复制到输出数据的key上,
    // 然后根据输入的value-list中元素的个数决定key的输出次数
    // 用全局linenum来代表key的位次
    public static class Reduce extends
            Reducer<IntWritable, IntWritable, IntWritable, IntWritable> {

        private static IntWritable linenum = new IntWritable(1);

        // 实现reduce函数
        public void reduce(IntWritable key, Iterable<IntWritable> values,
                Context context) throws IOException, InterruptedException {
            for (IntWritable val : values) {
                context.write(linenum, key);
                linenum = new IntWritable(linenum.get() + 1);
            }
        }
    }

    /**
     * @param args
     * @throws Exception
     */
    public static void main(String[] args) throws Exception {
        // TODO Auto-generated method stub
        Configuration conf = new Configuration();

        String[] ioArgs = new String[] { "sort_in", "sort_out" };
        String[] otherArgs = new GenericOptionsParser(conf, ioArgs)
                .getRemainingArgs();
        if (otherArgs.length != 2) {
            System.err.println("Usage: Data Sort <in> <out>");
            System.exit(2);
        }

        Job job = new Job(conf, "Data Sort");
        job.setJarByClass(Sort.class);
        
        // 设置Map和Reduce处理类
        job.setMapperClass(Map.class);
        job.setReducerClass(Reduce.class);

        // 设置输出类型
        job.setOutputKeyClass(IntWritable.class);
        job.setOutputValueClass(IntWritable.class);

        // 设置输入和输出目录
        FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
        FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));

        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}

3 平均成绩

public class Score {

    public static class Map extends    Mapper<LongWritable, Text, Text, IntWritable> {

        // 实现map函数
        public void map(LongWritable key, Text value, Context context)
                throws IOException, InterruptedException {

            // 将输入的纯文本文件的数据转化成String
            String line = value.toString();
            // 将输入的数据首先按行进行分割
            StringTokenizer tokenizerArticle = new StringTokenizer(line, "\n");

            // 分别对每一行进行处理
            while (tokenizerArticle.hasMoreElements()) {
                // 每行按空格划分
                StringTokenizer tokenizerLine = new StringTokenizer(
                        tokenizerArticle.nextToken());

                String strName = tokenizerLine.nextToken();// 学生姓名部分
                String strScore = tokenizerLine.nextToken();// 成绩部分

                Text name = new Text(strName);
                int scoreInt = Integer.parseInt(strScore);

                // 输出姓名和成绩
                context.write(name, new IntWritable(scoreInt));
            }
        }
    }

    public static class Reduce extends
            Reducer<Text, IntWritable, Text, IntWritable> {

        // 实现reduce函数
        public void reduce(Text key, Iterable<IntWritable> values,
                Context context) throws IOException, InterruptedException {

            int sum = 0;
            int count = 0;

            Iterator<IntWritable> iterator = values.iterator();
            while (iterator.hasNext()) {
                sum += iterator.next().get();// 计算总分
                count++;// 统计总的科目数
            }

            int average = (int) sum / count;// 计算平均成绩
            context.write(key, new IntWritable(average));
        }
    }

    /**
     * @param args
     * @throws Exception 
     */
    public static void main(String[] args) throws Exception {
        // TODO Auto-generated method stub
        Configuration conf = new Configuration();
        
        String[] ioArgs = new String[] { "score_in", "score_out" };

        String[] otherArgs = new GenericOptionsParser(conf, ioArgs).getRemainingArgs();
        if (otherArgs.length != 2) {
            System.err.println("Usage: Score Average <in> <out>");
            System.exit(2);
        }

        Job job = new Job(conf, "Score Average");
        job.setJarByClass(Score.class);
        
        // 设置Map、Combine和Reduce处理类
        job.setMapperClass(Map.class);
        job.setCombinerClass(Reduce.class);
        job.setReducerClass(Reduce.class);

        // 设置输出类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);

        // 将输入的数据集分割成小数据块splites,提供一个RecordReader的实现
        job.setInputFormatClass(TextInputFormat.class);

        // 提供一个RecordWriter的实现,负责数据输出
        job.setOutputFormatClass(TextOutputFormat.class);

        // 设置输入和输出目录
        FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
        FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}

4  倒排索引

public class InvertedIndex {
    public static class Map extends Mapper<Object, Text, Text, Text> {

        private Text keyInfo = new Text(); // 存储单词和URL组合
        private Text valueInfo = new Text(); // 存储词频
        private FileSplit split; // 存储Split对象

        // 实现map函数
        public void map(Object key, Text value, Context context)
                throws IOException, InterruptedException {

            // 获得<key,value>对所属的FileSplit对象
            split = (FileSplit) context.getInputSplit();

            StringTokenizer itr = new StringTokenizer(value.toString());

            while (itr.hasMoreTokens()) {
                // key值由单词和URL组成,如"MapReduce:file1.txt"
                // 获取文件的完整路径
                // keyInfo.set(itr.nextToken()+":"+split.getPath().toString());
                // 这里为了好看,只获取文件的名称。
                int splitIndex = split.getPath().toString().indexOf("file");
                keyInfo.set(itr.nextToken() + ":"
                        + split.getPath().toString().substring(splitIndex));

                // 词频初始化为1
                valueInfo.set("1");

                context.write(keyInfo, valueInfo);
            }
        }
    }

    public static class Combine extends Reducer<Text, Text, Text, Text> {

        private Text info = new Text();

        // 实现reduce函数
        public void reduce(Text key, Iterable<Text> values, Context context)
                throws IOException, InterruptedException {

            // 统计词频
            int sum = 0;
            for (Text value : values) {
                sum += Integer.parseInt(value.toString());
            }

            int splitIndex = key.toString().indexOf(":");

            // 重新设置value值由URL和词频组成
            info.set(key.toString().substring(splitIndex + 1) + ":" + sum);
            // 重新设置key值为单词
            key.set(key.toString().substring(0, splitIndex));

            context.write(key, info);
        }
    }

    public static class Reduce extends Reducer<Text, Text, Text, Text> {

        private Text result = new Text();

        // 实现reduce函数
        public void reduce(Text key, Iterable<Text> values, Context context)
                throws IOException, InterruptedException {

            // 生成文档列表
            String fileList = new String();
            for (Text value : values) {
                fileList += value.toString() + ";";
            }

            result.set(fileList);

            context.write(key, result);
        }
    }

    /**
     * @param args
     * @throws Exception
     */
    public static void main(String[] args) throws Exception {
        // TODO Auto-generated method stub
        Configuration conf = new Configuration();

        String[] ioArgs = new String[] { "index_in", "index_out" };
        String[] otherArgs = new GenericOptionsParser(conf, ioArgs)
                .getRemainingArgs();
        if (otherArgs.length != 2) {
            System.err.println("Usage: Inverted Index <in> <out>");
            System.exit(2);
        }

        Job job = new Job(conf, "Inverted Index");
        job.setJarByClass(InvertedIndex.class);

        // 设置Map、Combine和Reduce处理类
        job.setMapperClass(Map.class);
        job.setCombinerClass(Combine.class);
        job.setReducerClass(Reduce.class);

        // 设置Map输出类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(Text.class);

        // 设置Reduce输出类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);

        // 设置输入和输出目录
        FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
        FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}

--------------------------------------------------------------------------- 

本系列Hadoop1.2.0开发笔记系本人原创 

转载请注明出处 博客园 刺猬的温驯  

本文链接 http://www.cnblogs.com/chenying99/archive/2013/06/03/3114564.html

posted on 2013-06-03 05:51  刺猬的温驯  阅读(2006)  评论(0编辑  收藏  举报