requests之爬虫

requests模块

Python标准库中提供了:urllib、urllib2、httplib等模块以供Http请求,但是,它的 API 太渣了。它是为另一个时代、另一个互联网所创建的。它需要巨量的工作,甚至包括各种方法覆盖,来完成最简单的任务。

Requests 是使用 Apache2 Licensed 许可证的 基于Python开发的HTTP 库,其在Python内置模块的基础上进行了高度的封装,从而使得Pythoner进行网络请求时,变得美好了许多,使用Requests可以轻而易举的完成浏览器可有的任何操作。

安装:

个人推荐使用pip安装

pip install requests

  也可以使用easy_install安装

easy_install requests

  安装完成后,在pythonIDE中,import requests,如果未报错,则表示安装成功

requests快速入门

#HTTP请求类型,实质上所有请求都可以用requests.request来代替,请求方式在参数method里面定义
#get类型
r = requests.get('https://github.com/timeline.json')
#post类型
r = requests.post("http://m.ctrip.com/post")
#put类型
r = requests.put("http://m.ctrip.com/put")
#delete类型
r = requests.delete("http://m.ctrip.com/delete")
#head类型
r = requests.head("http://m.ctrip.com/head")
#options类型
r = requests.options("http://m.ctrip.com/get")

#获取响应内容
print (r.content) #以字节的方式去显示,中文显示为字符
print (r.text) #以文本的方式去显示

#URL传递参数
payload = {'keyword': '日本', 'salecityid': '2'}
r = requests.get("http://m.ctrip.com/webapp/tourvisa/visa_list", params=payload) 
print( r.url) #示例为http://m.ctrip.com/webapp/tourvisa/visa_list?salecityid=2&keyword=日本

#获取/修改网页编码
r = requests.get('https://github.com/timeline.json')
print r.encoding
r.encoding = 'utf-8' 或者r.encoding = r.apparent_encoding(调用网页自身编码)

#json处理
r = requests.get('https://github.com/timeline.json')
print (r.json()) #需要先import json    

#定制请求头
url = 'http://m.ctrip.com'
headers = {'User-Agent' : 'Mozilla/5.0 (Linux; Android 4.2.1; en-us; Nexus 4 Build/JOP40D) AppleWebKit/535.19 (KHTML, like Gecko) Chrome/18.0.1025.166 Mobile Safari/535.19'}
r = requests.post(url, headers=headers)
print (r.request.headers)
#复杂post请求
url = 'http://m.ctrip.com'
payload = {'some': 'data'}
r = requests.post(url, data=json.dumps(payload)) #如果传递的payload是string而不是dict,需要先调用dumps方法格式化一下

#响应状态码
r = requests.get('http://m.ctrip.com')
print( r.status_code)
    
#响应头
r = requests.get('http://m.ctrip.com')
print (r.headers)
print (r.headers['Content-Type'])
print (r.headers.get('content-type')) #访问响应头部分内容的两种方式
    
#Cookies
url = 'http://example.com/some/cookie/setting/url'
r = requests.get(url)
r.cookies['example_cookie_name']    #读取cookies
    
url = 'http://m.ctrip.com/cookies'
cookies = dict(cookies_are='working')
r = requests.get(url, cookies=cookies) #发送cookies

#设置超时时间
r = requests.get('http://m.ctrip.com', timeout=0.001)

#设置访问代理
proxies = {
           "http": "http://10.10.10.10:8888",
           "https": "http://10.10.10.100:4444",
          }
r = requests.get('http://m.ctrip.com', proxies=proxies)

#发送文件
def param_files():
    # 发送文件
    # file_dict = {
    # 'f1': open('readme', 'rb')
    # }
    # requests.request(method='POST',
    # url='http://127.0.0.1:8000/test/',
    # files=file_dict)

    # 发送文件,定制文件名
    # file_dict = {
    # 'f1': ('test.txt', open('readme', 'rb'))
    # }
    # requests.request(method='POST',
    # url='http://127.0.0.1:8000/test/',
    # files=file_dict)

    # 发送文件,定制文件名
    # file_dict = {
    # 'f1': ('test.txt', "hahsfaksfa9kasdjflaksdjf")
    # }
    # requests.request(method='POST',
    # url='http://127.0.0.1:8000/test/',
    # files=file_dict)

    # 发送文件,定制文件名
    # file_dict = {
    #     'f1': ('test.txt', "hahsfaksfa9kasdjflaksdjf", 'application/text', {'k1': '0'})
    # }
    # requests.request(method='POST',
    #                  url='http://127.0.0.1:8000/test/',
    #                  files=file_dict)

 

BeautifulSoup

BeautifulSoup是一个模块,该模块用于接收一个HTML或XML字符串,然后将其进行格式化,之后遍可以使用他提供的方法进行快速查找指定元素,从而使得在HTML或XML中查找指定元素变得简单。

安装beautifulsoup
可以利用 pip 或者 easy_install 来安装,以下两种方法均可
easy_install beautifulsoup4
&	
pip3 install beautifulsoup4

 Beautiful Soup支持Python标准库中的HTML解析器,还支持一些第三方的解析器,如果我们不安装它,则 Python 会使用 Python默认的解析器,lxml 解析器更加强大,速度更快,推荐安装。

解析器使用方法优势劣势
Python标准库 BeautifulSoup(markup, “html.parser”)
  • Python的内置标准库
  • 执行速度适中
  • 文档容错能力强
  • Python 2.7.3 or 3.2.2)前 的版本中文档容错能力差
lxml HTML 解析器 BeautifulSoup(markup, “lxml”)
  • 速度快
  • 文档容错能力强
  • 需要安装C语言库
lxml XML 解析器 BeautifulSoup(markup, [“lxml”, “xml”])BeautifulSoup(markup, “xml”)
  • 速度快
  • 唯一支持XML的解析器
  • 需要安装C语言库
html5lib BeautifulSoup(markup, “html5lib”)
  • 最好的容错性
  • 以浏览器的方式解析文档
  • 生成HTML5格式的文档
  • 速度慢
  • 不依赖外部扩展

 

创建 Beautiful Soup 对象

首先必须要导入 bs4 库

from bs4 import BeautifulSoup  

 创建beautifulsoup对象

	
soup = BeautifulSoup(html)

 另外,我们还可以用本地 HTML 文件来创建对象,例如

soup = BeautifulSoup(open('index.html'))  

使用示例:

from bs4 import BeautifulSoup
 
html_doc = """
<html><head><title>The Dormouse's story</title></head>
<body>
asdf
    <div class="title">
        <b>The Dormouse's story总共</b>
        <h1>f</h1>
    </div>
<div class="story">Once upon a time there were three little sisters; and their names were
    <a  class="sister0" id="link1">Els<span>f</span>ie</a>,
    <a href="http://example.com/lacie" class="sister" id="link2">Lacie</a> and
    <a href="http://example.com/tillie" class="sister" id="link3">Tillie</a>;
and they lived at the bottom of a well.</div>
ad<br/>sf
<p class="story">...</p>
</body>
</html>
"""
 
soup = BeautifulSoup(html_doc, features="lxml")
# 找到第一个a标签
tag1 = soup.find(name='a')
# 找到所有的a标签
tag2 = soup.find_all(name='a')
# 找到id=link2的标签
tag3 = soup.select('#link2')

1. name,标签名称

1 # tag = soup.find('a')
2 # name = tag.name # 获取
3 # print(name)
4 # tag.name = 'span' # 设置
5 # print(soup)
View Code

2. attr,标签属性

# tag = soup.find('a')
# attrs = tag.attrs    # 获取
# print(attrs)
# tag.attrs = {'ik':123} # 设置
# tag.attrs['id'] = 'iiiii' # 设置
# print(soup)
View Code

3. children,所有子标签

# body = soup.find('body')
# v = body.children
View Code

4. children,所有子子孙孙标签

# body = soup.find('body')
# v = body.descendants
View Code

5. clear,将标签的所有子标签全部清空(保留标签名)

# tag = soup.find('body')
# tag.clear()
# print(soup)
View Code

6. decompose,递归的删除所有的标签

# body = soup.find('body')
# body.decompose()
# print(soup)
View Code

7. extract,递归的删除所有的标签,并获取删除的标签

# body = soup.find('body')
# v = body.extract()
# print(soup)
View Code

8. decode,转换为字符串(含当前标签);decode_contents(不含当前标签)

# body = soup.find('body')
# v = body.decode()
# v = body.decode_contents()
# print(v)
View Code

9. encode,转换为字节(含当前标签);encode_contents(不含当前标签)

# body = soup.find('body')
# v = body.encode()
# v = body.encode_contents()
# print(v)
View Code

10. find,获取匹配的第一个标签

# tag = soup.find('a')
# print(tag)
# tag = soup.find(name='a', attrs={'class': 'sister'}, recursive=True, text='Lacie')
# tag = soup.find(name='a', class_='sister', recursive=True, text='Lacie')
# print(tag)
View Code

11. find_all,获取匹配的所有标签

# tags = soup.find_all('a')
# print(tags)
 
# tags = soup.find_all('a',limit=1)
# print(tags)
 
# tags = soup.find_all(name='a', attrs={'class': 'sister'}, recursive=True, text='Lacie')
# # tags = soup.find(name='a', class_='sister', recursive=True, text='Lacie')
# print(tags)
 
 
# ####### 列表 #######
# v = soup.find_all(name=['a','div'])
# print(v)
 
# v = soup.find_all(class_=['sister0', 'sister'])
# print(v)
 
# v = soup.find_all(text=['Tillie'])
# print(v, type(v[0]))
 
 
# v = soup.find_all(id=['link1','link2'])
# print(v)
 
# v = soup.find_all(href=['link1','link2'])
# print(v)
 
# ####### 正则 #######
import re
# rep = re.compile('p')
# rep = re.compile('^p')
# v = soup.find_all(name=rep)
# print(v)
 
# rep = re.compile('sister.*')
# v = soup.find_all(class_=rep)
# print(v)
 
# rep = re.compile('http://www.oldboy.com/static/.*')
# v = soup.find_all(href=rep)
# print(v)
 
# ####### 方法筛选 #######
# def func(tag):
# return tag.has_attr('class') and tag.has_attr('id')
# v = soup.find_all(name=func)
# print(v)
 
 
# ## get,获取标签属性
# tag = soup.find('a')
# v = tag.get('id')
# print(v)
View Code

12. has_attr,检查标签是否具有该属性

# tag = soup.find('a')
# v = tag.has_attr('id')
# print(v)
View Code

13. get_text,获取标签内部文本内容

# tag = soup.find('a')
# v = tag.get_text('id')
# print(v)
View Code

14. index,检查标签在某标签中的索引位置

# tag = soup.find('body')
# v = tag.index(tag.find('div'))
# print(v)
 
# tag = soup.find('body')
# for i,v in enumerate(tag):
# print(i,v)
View Code

15. is_empty_element,是否是空标签(是否可以是空)或者自闭合标签,

 判断是否是如下标签:'br' , 'hr', 'input', 'img', 'meta','spacer', 'link', 'frame', 'base'

# tag = soup.find('br')
# v = tag.is_empty_element
# print(v)
View Code

16. 当前的关联标签

# soup.next
# soup.next_element
# soup.next_elements
# soup.next_sibling
# soup.next_siblings
 
#
# tag.previous
# tag.previous_element
# tag.previous_elements
# tag.previous_sibling
# tag.previous_siblings
 
#
# tag.parent
# tag.parents
View Code

17. 查找某标签的关联标签

# tag.find_next(...)
# tag.find_all_next(...)
# tag.find_next_sibling(...)
# tag.find_next_siblings(...)
 
# tag.find_previous(...)
# tag.find_all_previous(...)
# tag.find_previous_sibling(...)
# tag.find_previous_siblings(...)
 
# tag.find_parent(...)
# tag.find_parents(...)
 
# 参数同find_all
View Code

18. select,select_one, CSS选择器

soup.select("title")
 
soup.select("p nth-of-type(3)")
 
soup.select("body a")
 
soup.select("html head title")
 
tag = soup.select("span,a")
 
soup.select("head > title")
 
soup.select("p > a")
 
soup.select("p > a:nth-of-type(2)")
 
soup.select("p > #link1")
 
soup.select("body > a")
 
soup.select("#link1 ~ .sister")
 
soup.select("#link1 + .sister")
 
soup.select(".sister")
 
soup.select("[class~=sister]")
 
soup.select("#link1")
 
soup.select("a#link2")
 
soup.select('a[href]')
 
soup.select('a[href="http://example.com/elsie"]')
 
soup.select('a[href^="http://example.com/"]')
 
soup.select('a[href$="tillie"]')
 
soup.select('a[href*=".com/el"]')
 
 
from bs4.element import Tag
 
def default_candidate_generator(tag):
    for child in tag.descendants:
        if not isinstance(child, Tag):
            continue
        if not child.has_attr('href'):
            continue
        yield child
 
tags = soup.find('body').select("a", _candidate_generator=default_candidate_generator)
print(type(tags), tags)
 
from bs4.element import Tag
def default_candidate_generator(tag):
    for child in tag.descendants:
        if not isinstance(child, Tag):
            continue
        if not child.has_attr('href'):
            continue
        yield child
 
tags = soup.find('body').select("a", _candidate_generator=default_candidate_generator, limit=1)
print(type(tags), tags)
View Code

19. 标签的内容

# tag = soup.find('span')
# print(tag.string)          # 获取
# tag.string = 'new content' # 设置
# print(soup)
 
# tag = soup.find('body')
# print(tag.string)
# tag.string = 'xxx'
# print(soup)
 
# tag = soup.find('body')
# v = tag.stripped_strings  # 递归内部获取所有标签的文本
# print(v)
View Code

20.append在当前标签内部追加一个标签

# tag = soup.find('body')
# tag.append(soup.find('a'))
# print(soup)
#
# from bs4.element import Tag
# obj = Tag(name='i',attrs={'id': 'it'})
# obj.string = '我是一个新来的'
# tag = soup.find('body')
# tag.append(obj)
# print(soup)
View Code

21.insert在当前标签内部指定位置插入一个标签

# from bs4.element import Tag
# obj = Tag(name='i', attrs={'id': 'it'})
# obj.string = '我是一个新来的'
# tag = soup.find('body')
# tag.insert(2, obj)
# print(soup)
View Code

22. insert_after,insert_before 在当前标签后面或前面插入

# from bs4.element import Tag
# obj = Tag(name='i', attrs={'id': 'it'})
# obj.string = '我是一个新来的'
# tag = soup.find('body')
# # tag.insert_before(obj)
# tag.insert_after(obj)
# print(soup)
View Code

23. replace_with 在当前标签替换为指定标签

# from bs4.element import Tag
# obj = Tag(name='i', attrs={'id': 'it'})
# obj.string = '我是一个新来的'
# tag = soup.find('div')
# tag.replace_with(obj)
# print(soup)
View Code

24. 创建标签之间的关系

# tag = soup.find('div')
# a = soup.find('a')
# tag.setup(previous_sibling=a)
# print(tag.previous_sibling)
View Code

25. wrap,将指定标签把当前标签包裹起来

# from bs4.element import Tag
# obj1 = Tag(name='div', attrs={'id': 'it'})
# obj1.string = '我是一个新来的'
#
# tag = soup.find('a')
# v = tag.wrap(obj1)
# print(soup)
 
# tag = soup.find('a')
# v = tag.wrap(soup.find('p'))
# print(soup)
View Code

26. unwrap,去掉当前标签,将保留其包裹的标签

# tag = soup.find('a')
# v = tag.unwrap()
# print(soup)
View Code

基于requests实现自动登录示例

1.自动登录Github

from bs4 import BeautifulSoup
import requests
import re

session = requests.session()


head = {
    'User-Agent':'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/57.0.2987.133 Safari/537.36'
}
r1 = session.get('https://github.com/login',headers = head)
r1.encoding = r1.apparent_encoding
token_tag = re.findall('<input name="authenticity_token" type="hidden" value="(.*)" />',r1.text,)
response1 = session.post(
    url='https://github.com/session',
    verify=False,
    data={
        'commit':'Sign in',
        'utf8':'',
        'authenticity_token':token_tag[0],
        'login':'account',
        'password':'password'
    }
    )
print(response1.text)
View Code

 

2.登录知乎

import time

import requests
from bs4 import BeautifulSoup

session = requests.Session()

i1 = session.get(
    url='https://www.zhihu.com/#signin',
    headers={
        'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.98 Safari/537.36',
    }
)

soup1 = BeautifulSoup(i1.text, 'lxml')
xsrf_tag = soup1.find(name='input', attrs={'name': '_xsrf'})
xsrf = xsrf_tag.get('value')

current_time = time.time()
i2 = session.get(
    url='https://www.zhihu.com/captcha.gif',
    params={'r': current_time, 'type': 'login'},
    headers={
        'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.98 Safari/537.36',
    })

with open('zhihu.gif', 'wb') as f:
    f.write(i2.content)

captcha = input('请打开zhihu.gif文件,查看并输入验证码:')
form_data = {
    "_xsrf": xsrf,
    'password': 'xxooxxoo',
    "captcha": 'captcha',
    'email': '424662508@qq.com'
}
i3 = session.post(
    url='https://www.zhihu.com/login/email',
    data=form_data,
    headers={
        'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.98 Safari/537.36',
    }
)

i4 = session.get(
    url='https://www.zhihu.com/settings/profile',
    headers={
        'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.98 Safari/537.36',
    }
)

soup4 = BeautifulSoup(i4.text, 'lxml')
tag = soup4.find(id='rename-section')
nick_name = tag.find('span',class_='name').string
print(nick_name)
View Code

 

  

 

posted @ 2017-05-18 10:17  amchen  阅读(278)  评论(0编辑  收藏  举报