requests之爬虫
requests模块
Python标准库中提供了:urllib、urllib2、httplib等模块以供Http请求,但是,它的 API 太渣了。它是为另一个时代、另一个互联网所创建的。它需要巨量的工作,甚至包括各种方法覆盖,来完成最简单的任务。
Requests 是使用 Apache2 Licensed 许可证的 基于Python开发的HTTP 库,其在Python内置模块的基础上进行了高度的封装,从而使得Pythoner进行网络请求时,变得美好了许多,使用Requests可以轻而易举的完成浏览器可有的任何操作。
安装:
个人推荐使用pip安装
pip install requests
也可以使用easy_install安装
easy_install requests
安装完成后,在pythonIDE中,import requests,如果未报错,则表示安装成功
requests快速入门
#HTTP请求类型,实质上所有请求都可以用requests.request来代替,请求方式在参数method里面定义 #get类型 r = requests.get('https://github.com/timeline.json') #post类型 r = requests.post("http://m.ctrip.com/post") #put类型 r = requests.put("http://m.ctrip.com/put") #delete类型 r = requests.delete("http://m.ctrip.com/delete") #head类型 r = requests.head("http://m.ctrip.com/head") #options类型 r = requests.options("http://m.ctrip.com/get") #获取响应内容 print (r.content) #以字节的方式去显示,中文显示为字符 print (r.text) #以文本的方式去显示 #URL传递参数 payload = {'keyword': '日本', 'salecityid': '2'} r = requests.get("http://m.ctrip.com/webapp/tourvisa/visa_list", params=payload) print( r.url) #示例为http://m.ctrip.com/webapp/tourvisa/visa_list?salecityid=2&keyword=日本 #获取/修改网页编码 r = requests.get('https://github.com/timeline.json') print r.encoding r.encoding = 'utf-8' 或者r.encoding = r.apparent_encoding(调用网页自身编码) #json处理 r = requests.get('https://github.com/timeline.json') print (r.json()) #需要先import json #定制请求头 url = 'http://m.ctrip.com' headers = {'User-Agent' : 'Mozilla/5.0 (Linux; Android 4.2.1; en-us; Nexus 4 Build/JOP40D) AppleWebKit/535.19 (KHTML, like Gecko) Chrome/18.0.1025.166 Mobile Safari/535.19'} r = requests.post(url, headers=headers) print (r.request.headers) #复杂post请求 url = 'http://m.ctrip.com' payload = {'some': 'data'} r = requests.post(url, data=json.dumps(payload)) #如果传递的payload是string而不是dict,需要先调用dumps方法格式化一下 #响应状态码 r = requests.get('http://m.ctrip.com') print( r.status_code) #响应头 r = requests.get('http://m.ctrip.com') print (r.headers) print (r.headers['Content-Type']) print (r.headers.get('content-type')) #访问响应头部分内容的两种方式 #Cookies url = 'http://example.com/some/cookie/setting/url' r = requests.get(url) r.cookies['example_cookie_name'] #读取cookies url = 'http://m.ctrip.com/cookies' cookies = dict(cookies_are='working') r = requests.get(url, cookies=cookies) #发送cookies #设置超时时间 r = requests.get('http://m.ctrip.com', timeout=0.001) #设置访问代理 proxies = { "http": "http://10.10.10.10:8888", "https": "http://10.10.10.100:4444", } r = requests.get('http://m.ctrip.com', proxies=proxies)
#发送文件
def param_files(): # 发送文件 # file_dict = { # 'f1': open('readme', 'rb') # } # requests.request(method='POST', # url='http://127.0.0.1:8000/test/', # files=file_dict) # 发送文件,定制文件名 # file_dict = { # 'f1': ('test.txt', open('readme', 'rb')) # } # requests.request(method='POST', # url='http://127.0.0.1:8000/test/', # files=file_dict) # 发送文件,定制文件名 # file_dict = { # 'f1': ('test.txt', "hahsfaksfa9kasdjflaksdjf") # } # requests.request(method='POST', # url='http://127.0.0.1:8000/test/', # files=file_dict) # 发送文件,定制文件名 # file_dict = { # 'f1': ('test.txt', "hahsfaksfa9kasdjflaksdjf", 'application/text', {'k1': '0'}) # } # requests.request(method='POST', # url='http://127.0.0.1:8000/test/', # files=file_dict)
BeautifulSoup
BeautifulSoup是一个模块,该模块用于接收一个HTML或XML字符串,然后将其进行格式化,之后遍可以使用他提供的方法进行快速查找指定元素,从而使得在HTML或XML中查找指定元素变得简单。
安装beautifulsoup 可以利用 pip 或者 easy_install 来安装,以下两种方法均可 easy_install beautifulsoup4 & pip3 install beautifulsoup4
Beautiful Soup支持Python标准库中的HTML解析器,还支持一些第三方的解析器,如果我们不安装它,则 Python 会使用 Python默认的解析器,lxml 解析器更加强大,速度更快,推荐安装。
解析器 | 使用方法 | 优势 | 劣势 |
---|---|---|---|
Python标准库 | BeautifulSoup(markup, “html.parser”) |
|
|
lxml HTML 解析器 | BeautifulSoup(markup, “lxml”) |
|
|
lxml XML 解析器 | BeautifulSoup(markup, [“lxml”, “xml”])BeautifulSoup(markup, “xml”) |
|
|
html5lib | BeautifulSoup(markup, “html5lib”) |
|
|
创建 Beautiful Soup 对象
首先必须要导入 bs4 库
from bs4 import BeautifulSoup
创建beautifulsoup对象
soup = BeautifulSoup(html)
另外,我们还可以用本地 HTML 文件来创建对象,例如
soup = BeautifulSoup(open('index.html'))
使用示例:
from bs4 import BeautifulSoup html_doc = """ <html><head><title>The Dormouse's story</title></head> <body> asdf <div class="title"> <b>The Dormouse's story总共</b> <h1>f</h1> </div> <div class="story">Once upon a time there were three little sisters; and their names were <a class="sister0" id="link1">Els<span>f</span>ie</a>, <a href="http://example.com/lacie" class="sister" id="link2">Lacie</a> and <a href="http://example.com/tillie" class="sister" id="link3">Tillie</a>; and they lived at the bottom of a well.</div> ad<br/>sf <p class="story">...</p> </body> </html> """ soup = BeautifulSoup(html_doc, features="lxml") # 找到第一个a标签 tag1 = soup.find(name='a') # 找到所有的a标签 tag2 = soup.find_all(name='a') # 找到id=link2的标签 tag3 = soup.select('#link2')
1. name,标签名称
1 # tag = soup.find('a') 2 # name = tag.name # 获取 3 # print(name) 4 # tag.name = 'span' # 设置 5 # print(soup)
2. attr,标签属性
# tag = soup.find('a') # attrs = tag.attrs # 获取 # print(attrs) # tag.attrs = {'ik':123} # 设置 # tag.attrs['id'] = 'iiiii' # 设置 # print(soup)
3. children,所有子标签
# body = soup.find('body') # v = body.children
4. children,所有子子孙孙标签
# body = soup.find('body') # v = body.descendants
5. clear,将标签的所有子标签全部清空(保留标签名)
# tag = soup.find('body') # tag.clear() # print(soup)
6. decompose,递归的删除所有的标签
# body = soup.find('body') # body.decompose() # print(soup)
7. extract,递归的删除所有的标签,并获取删除的标签
# body = soup.find('body') # v = body.extract() # print(soup)
8. decode,转换为字符串(含当前标签);decode_contents(不含当前标签)
# body = soup.find('body') # v = body.decode() # v = body.decode_contents() # print(v)
9. encode,转换为字节(含当前标签);encode_contents(不含当前标签)
# body = soup.find('body') # v = body.encode() # v = body.encode_contents() # print(v)
10. find,获取匹配的第一个标签
# tag = soup.find('a') # print(tag) # tag = soup.find(name='a', attrs={'class': 'sister'}, recursive=True, text='Lacie') # tag = soup.find(name='a', class_='sister', recursive=True, text='Lacie') # print(tag)
11. find_all,获取匹配的所有标签
# tags = soup.find_all('a') # print(tags) # tags = soup.find_all('a',limit=1) # print(tags) # tags = soup.find_all(name='a', attrs={'class': 'sister'}, recursive=True, text='Lacie') # # tags = soup.find(name='a', class_='sister', recursive=True, text='Lacie') # print(tags) # ####### 列表 ####### # v = soup.find_all(name=['a','div']) # print(v) # v = soup.find_all(class_=['sister0', 'sister']) # print(v) # v = soup.find_all(text=['Tillie']) # print(v, type(v[0])) # v = soup.find_all(id=['link1','link2']) # print(v) # v = soup.find_all(href=['link1','link2']) # print(v) # ####### 正则 ####### import re # rep = re.compile('p') # rep = re.compile('^p') # v = soup.find_all(name=rep) # print(v) # rep = re.compile('sister.*') # v = soup.find_all(class_=rep) # print(v) # rep = re.compile('http://www.oldboy.com/static/.*') # v = soup.find_all(href=rep) # print(v) # ####### 方法筛选 ####### # def func(tag): # return tag.has_attr('class') and tag.has_attr('id') # v = soup.find_all(name=func) # print(v) # ## get,获取标签属性 # tag = soup.find('a') # v = tag.get('id') # print(v)
12. has_attr,检查标签是否具有该属性
# tag = soup.find('a') # v = tag.has_attr('id') # print(v)
13. get_text,获取标签内部文本内容
# tag = soup.find('a') # v = tag.get_text('id') # print(v)
14. index,检查标签在某标签中的索引位置
# tag = soup.find('body') # v = tag.index(tag.find('div')) # print(v) # tag = soup.find('body') # for i,v in enumerate(tag): # print(i,v)
15. is_empty_element,是否是空标签(是否可以是空)或者自闭合标签,
判断是否是如下标签:'br' , 'hr', 'input', 'img', 'meta','spacer', 'link', 'frame', 'base'
# tag = soup.find('br') # v = tag.is_empty_element # print(v)
16. 当前的关联标签
# soup.next # soup.next_element # soup.next_elements # soup.next_sibling # soup.next_siblings # # tag.previous # tag.previous_element # tag.previous_elements # tag.previous_sibling # tag.previous_siblings # # tag.parent # tag.parents
17. 查找某标签的关联标签
# tag.find_next(...) # tag.find_all_next(...) # tag.find_next_sibling(...) # tag.find_next_siblings(...) # tag.find_previous(...) # tag.find_all_previous(...) # tag.find_previous_sibling(...) # tag.find_previous_siblings(...) # tag.find_parent(...) # tag.find_parents(...) # 参数同find_all
18. select,select_one, CSS选择器
soup.select("title") soup.select("p nth-of-type(3)") soup.select("body a") soup.select("html head title") tag = soup.select("span,a") soup.select("head > title") soup.select("p > a") soup.select("p > a:nth-of-type(2)") soup.select("p > #link1") soup.select("body > a") soup.select("#link1 ~ .sister") soup.select("#link1 + .sister") soup.select(".sister") soup.select("[class~=sister]") soup.select("#link1") soup.select("a#link2") soup.select('a[href]') soup.select('a[href="http://example.com/elsie"]') soup.select('a[href^="http://example.com/"]') soup.select('a[href$="tillie"]') soup.select('a[href*=".com/el"]') from bs4.element import Tag def default_candidate_generator(tag): for child in tag.descendants: if not isinstance(child, Tag): continue if not child.has_attr('href'): continue yield child tags = soup.find('body').select("a", _candidate_generator=default_candidate_generator) print(type(tags), tags) from bs4.element import Tag def default_candidate_generator(tag): for child in tag.descendants: if not isinstance(child, Tag): continue if not child.has_attr('href'): continue yield child tags = soup.find('body').select("a", _candidate_generator=default_candidate_generator, limit=1) print(type(tags), tags)
19. 标签的内容
# tag = soup.find('span') # print(tag.string) # 获取 # tag.string = 'new content' # 设置 # print(soup) # tag = soup.find('body') # print(tag.string) # tag.string = 'xxx' # print(soup) # tag = soup.find('body') # v = tag.stripped_strings # 递归内部获取所有标签的文本 # print(v)
20.append在当前标签内部追加一个标签
# tag = soup.find('body') # tag.append(soup.find('a')) # print(soup) # # from bs4.element import Tag # obj = Tag(name='i',attrs={'id': 'it'}) # obj.string = '我是一个新来的' # tag = soup.find('body') # tag.append(obj) # print(soup)
21.insert在当前标签内部指定位置插入一个标签
# from bs4.element import Tag # obj = Tag(name='i', attrs={'id': 'it'}) # obj.string = '我是一个新来的' # tag = soup.find('body') # tag.insert(2, obj) # print(soup)
22. insert_after,insert_before 在当前标签后面或前面插入
# from bs4.element import Tag # obj = Tag(name='i', attrs={'id': 'it'}) # obj.string = '我是一个新来的' # tag = soup.find('body') # # tag.insert_before(obj) # tag.insert_after(obj) # print(soup)
23. replace_with 在当前标签替换为指定标签
# from bs4.element import Tag # obj = Tag(name='i', attrs={'id': 'it'}) # obj.string = '我是一个新来的' # tag = soup.find('div') # tag.replace_with(obj) # print(soup)
24. 创建标签之间的关系
# tag = soup.find('div') # a = soup.find('a') # tag.setup(previous_sibling=a) # print(tag.previous_sibling)
25. wrap,将指定标签把当前标签包裹起来
# from bs4.element import Tag # obj1 = Tag(name='div', attrs={'id': 'it'}) # obj1.string = '我是一个新来的' # # tag = soup.find('a') # v = tag.wrap(obj1) # print(soup) # tag = soup.find('a') # v = tag.wrap(soup.find('p')) # print(soup)
26. unwrap,去掉当前标签,将保留其包裹的标签
# tag = soup.find('a') # v = tag.unwrap() # print(soup)
基于requests实现自动登录示例
1.自动登录Github
from bs4 import BeautifulSoup import requests import re session = requests.session() head = { 'User-Agent':'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/57.0.2987.133 Safari/537.36' } r1 = session.get('https://github.com/login',headers = head) r1.encoding = r1.apparent_encoding token_tag = re.findall('<input name="authenticity_token" type="hidden" value="(.*)" />',r1.text,) response1 = session.post( url='https://github.com/session', verify=False, data={ 'commit':'Sign in', 'utf8':'✓', 'authenticity_token':token_tag[0], 'login':'account', 'password':'password' } ) print(response1.text)
2.登录知乎
import time import requests from bs4 import BeautifulSoup session = requests.Session() i1 = session.get( url='https://www.zhihu.com/#signin', headers={ 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.98 Safari/537.36', } ) soup1 = BeautifulSoup(i1.text, 'lxml') xsrf_tag = soup1.find(name='input', attrs={'name': '_xsrf'}) xsrf = xsrf_tag.get('value') current_time = time.time() i2 = session.get( url='https://www.zhihu.com/captcha.gif', params={'r': current_time, 'type': 'login'}, headers={ 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.98 Safari/537.36', }) with open('zhihu.gif', 'wb') as f: f.write(i2.content) captcha = input('请打开zhihu.gif文件,查看并输入验证码:') form_data = { "_xsrf": xsrf, 'password': 'xxooxxoo', "captcha": 'captcha', 'email': '424662508@qq.com' } i3 = session.post( url='https://www.zhihu.com/login/email', data=form_data, headers={ 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.98 Safari/537.36', } ) i4 = session.get( url='https://www.zhihu.com/settings/profile', headers={ 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.98 Safari/537.36', } ) soup4 = BeautifulSoup(i4.text, 'lxml') tag = soup4.find(id='rename-section') nick_name = tag.find('span',class_='name').string print(nick_name)