腾讯微信面试题--实现时间复杂度为O(1)的栈 2013-02-26
去面试微信实习,遇到这道算法题,当时被卡住,故今天把它写出来做下知识整理,
原题:实现一个栈,满足min() pop() push()方法的时间复杂度都为O(1).( min()返回栈中最小元素 )
思路1:用一个变量minItem记录栈中的最小值,在push()中 每次加入一个item就跟minItem对比,item更小,只item赋给minItem,然后再min() 中直接return minItem;
这种思路没考虑在pop()过程中,对minItem的影响,当栈顶元素是minItem,执行pop() 后minItem就不知道指向谁了,因为栈只记录最小值而起,至于最小值之前那些大小关系都没记录
正确思路:为了实现更低的时间复杂度,我们都会想到用空间去换时间,所有这里增加一个数组来nextMinItem[index] 元素大小关系。如果当前最小值是 对象 item1 当push进来的item2比 item1更小,且元素个数从原本的a增加到a+1 这时候我们用我们就应该把item2这个更小的item赋给minItem 然后用nextMinItem[a+1] = item1 来记录 item2 后面的次小值,这样一来当item2 这个栈顶被pop()掉的话,我们就可以minItem = nextMinItem[a+1],来恢复minItem。
package 腾讯面试题; public class Stack { private int itemCount = 0; private Item minItem = null; private Item[] nextMinItem; private Item stackTop = null; private int maxSize = 100; public Stack() { nextMinItem = new Item[maxSize]; } class Item { int Data; Item nextItem; public Item(int data) { this.Data = data; } } public boolean push(Item item) { if (itemCount == maxSize) { System.out.println("栈已满"); return false; } itemCount++; if (minItem == null) { minItem = item; } else { if (item.Data < minItem.Data) { nextMinItem[itemCount] = minItem; minItem = item; } } item.nextItem = stackTop; stackTop = item; return true; } public boolean pop() { if (itemCount == 0) { System.out.println("栈是空的,无法出栈"); return false; } if (stackTop == minItem) { minItem = nextMinItem[itemCount]; } stackTop = stackTop.nextItem; itemCount--; return true; } public Item min() { if (itemCount == 0) { System.out.println("栈是空的,无最小值"); return null; } return minItem; } /** * @param args */ public static void main(String[] args) { // TODO Auto-generated method stub Stack stack = new Stack(); stack.push(stack.new Item(5)); System.out.println("push:min=" + stack.min().Data+" itemCount="+stack.itemCount); stack.push(stack.new Item(4)); System.out.println("push:min=" + stack.min().Data+" itemCount="+stack.itemCount); stack.push(stack.new Item(3)); System.out.println("push:min=" + stack.min().Data+" itemCount="+stack.itemCount); stack.push(stack.new Item(2)); System.out.println("push:min=" + stack.min().Data+" itemCount="+stack.itemCount); stack.push(stack.new Item(1)); System.out.println("push:min=" + stack.min().Data+" itemCount="+stack.itemCount); stack.pop(); System.out.println("pop :min=" + stack.min().Data+" itemCount="+stack.itemCount); stack.pop(); System.out.println("pop :min=" + stack.min().Data+" itemCount="+stack.itemCount); stack.pop(); System.out.println("pop :min=" + stack.min().Data+" itemCount="+stack.itemCount); stack.pop(); System.out.println("pop :min=" + stack.min().Data+" itemCount="+stack.itemCount); stack.pop(); System.out.println("栈结构为:\n|____1_____|\n|____2_____|\n|____3_____|\n|____4_____|\n|____5_____|\n"); } }
运行结果: