腾讯微信面试题--实现时间复杂度为O(1)的栈 2013-02-26

去面试微信实习,遇到这道算法题,当时被卡住,故今天把它写出来做下知识整理,

 

原题:实现一个栈,满足min()  pop()  push()方法的时间复杂度都为O(1).( min()返回栈中最小元素 )

 

     思路1:用一个变量minItem记录栈中的最小值,在push()中 每次加入一个item就跟minItem对比,item更小,只item赋给minItem,然后再min() 中直接return  minItem;

 

     这种思路没考虑在pop()过程中,对minItem的影响,当栈顶元素是minItem,执行pop() 后minItem就不知道指向谁了,因为栈只记录最小值而起,至于最小值之前那些大小关系都没记录

 

      正确思路:为了实现更低的时间复杂度,我们都会想到用空间去换时间,所有这里增加一个数组来nextMinItem[index] 元素大小关系。如果当前最小值是 对象 item1 当push进来的item2比 item1更小,且元素个数从原本的a增加到a+1 这时候我们用我们就应该把item2这个更小的item赋给minItem 然后用nextMinItem[a+1] = item1 来记录 item2 后面的次小值,这样一来当item2 这个栈顶被pop()掉的话,我们就可以minItem = nextMinItem[a+1],来恢复minItem。

 

 

package 腾讯面试题;

public class Stack {
	private int itemCount = 0;
	private Item minItem = null;
	private Item[] nextMinItem;
	private Item stackTop = null;
	private int maxSize = 100;

	public Stack() {
		nextMinItem = new Item[maxSize];
	}

	class Item {
		int Data;
		Item nextItem;

		public Item(int data) {
			this.Data = data;
		}

	}

	public boolean push(Item item) {
		if (itemCount == maxSize) {
			System.out.println("栈已满");
			return false;
		}
		itemCount++;
		if (minItem == null) {
			minItem = item;
		} else {
			if (item.Data < minItem.Data) {
				nextMinItem[itemCount] = minItem;
				minItem = item;
			}
		}
		item.nextItem = stackTop;
		stackTop = item;
		
		return true;
	}

	public boolean pop() {
		if (itemCount == 0) {
			System.out.println("栈是空的,无法出栈");
			return false;
		}

		if (stackTop == minItem) {
			minItem = nextMinItem[itemCount];
		}
		stackTop = stackTop.nextItem;
		itemCount--;
		return true;

	}

	public Item min() {
		if (itemCount == 0) {
			System.out.println("栈是空的,无最小值");
			return null;
		}
		return minItem;
	}

	/**
	 * @param args
	 */
	public static void main(String[] args) {
		// TODO Auto-generated method stub
		Stack stack = new Stack();
		stack.push(stack.new Item(5));
		System.out.println("push:min=" + stack.min().Data+" itemCount="+stack.itemCount);
		stack.push(stack.new Item(4));
		System.out.println("push:min=" + stack.min().Data+" itemCount="+stack.itemCount);
		stack.push(stack.new Item(3));
		System.out.println("push:min=" + stack.min().Data+" itemCount="+stack.itemCount);
		stack.push(stack.new Item(2));
		System.out.println("push:min=" + stack.min().Data+" itemCount="+stack.itemCount);
		stack.push(stack.new Item(1));
		System.out.println("push:min=" + stack.min().Data+" itemCount="+stack.itemCount);
		stack.pop();
		System.out.println("pop :min=" + stack.min().Data+" itemCount="+stack.itemCount);
		stack.pop();
		System.out.println("pop :min=" + stack.min().Data+" itemCount="+stack.itemCount);
		stack.pop();
		System.out.println("pop :min=" + stack.min().Data+" itemCount="+stack.itemCount);
		stack.pop();
		System.out.println("pop :min=" + stack.min().Data+" itemCount="+stack.itemCount);
		stack.pop();
		System.out.println("栈结构为:\n|____1_____|\n|____2_____|\n|____3_____|\n|____4_____|\n|____5_____|\n");

		
	}
}

  

 

 

运行结果:

 

push:min=5 itemCount=1
push:min=4 itemCount=2
push:min=3 itemCount=3
push:min=2 itemCount=4
push:min=1 itemCount=5
pop :min=2 itemCount=4
pop :min=3 itemCount=3
pop :min=4 itemCount=2
pop :min=5 itemCount=1
栈结构为:
|____1_____|
|____2_____|
|____3_____|
|____4_____|
|____5_____|

  

 

 

 

posted @ 2013-03-29 08:17  chenchuangfeng  阅读(6036)  评论(28编辑  收藏  举报