二叉树的遍历(递归,迭代,Morris遍历)
二叉树的遍历:
先序,中序,后序;
二叉树的遍历有三种常见的方法,
最简单的实现就是递归调用,
另外就是飞递归的迭代调用,
最后还有O(1)空间的morris遍历;
二叉树的结构定义:
1 struct TreeNode { 2 int val; 3 TreeNode *left; 4 TreeNode *right; 5 TreeNode(int x) : val(x), left(NULL), right(NULL) {} 6 };
1.先序遍历:
递归:
1 void preOrderRecursive(TreeNode *root) { 2 if (!root) 3 return; 4 cout << root->val << " "; 5 preOrderRecursive(root->left); 6 preOrderRecursive(root->right); 7 }
迭代:
迭代要用到栈来保存父亲结点,
先序遍历,所有访问过的结点都先输出,
先遍历当前结点和当前结点的左子树,一直到左子树的最左边的结点,
遍历过的这些结点都入栈,左孩子为空时,栈顶元素设为当前结点,出栈,
然后把当前结点设为该节点的右孩子,循环一直到当前结点为空且栈也为空。
1 void preOrderIterative(TreeNode *root) { 2 if (!root) 3 return; 4 stack<TreeNode*> stk; 5 TreeNode *cur = root; 6 while (cur || !stk.empty()) { 7 while (cur) { 8 cout << cur->val << " "; 9 stk.push(cur); 10 cur = cur->left; 11 } 12 if (!stk.empty()) { 13 cur = stk.top(); 14 stk.pop(); 15 cur = cur->right; 16 } 17 } 18 } 19 /* 20 * 模拟递归 21 * */ 22 void preOrderIterative1(TreeNode *root) { 23 if (!root) 24 return; 25 stack<TreeNode*> stk; 26 stk.push(root); 27 while (!stk.empty()) { 28 TreeNode* tp = stk.top(); 29 stk.pop(); 30 cout << tp->val << " "; 31 if (tp->right) 32 stk.push(tp->right); 33 if (tp->left) 34 stk.push(tp->left); 35 } 36 }
Morris方法:
1.当前结点的左孩子为空,输出当前结点,并设置当前结点的右孩子为当前结点;
2.当前结点的左孩子不为空:
a.找到当前结点中序遍历的前驱结点,即为该节点的左孩子的最右边的结点,前驱结点的右孩子为空,则设置前驱结点的右孩子为当前结点,并输出当前结点,设当前结点的左孩子为当前结点;
b.前驱结点的右孩子为当前结点,则恢复前驱结点的右孩子为NULL,设当前结点的右孩子为当前结点;
1 void preOrderMorris(TreeNode *root) { 2 if (!root) 3 return; 4 TreeNode* cur = root; 5 TreeNode* pre = NULL; 6 while (cur) { 7 if (cur->left == NULL) { 8 cout << cur->val << " "; 9 cur = cur->right; 10 } 11 else { 12 pre = cur->left; 13 while (pre->right != NULL && pre->right != cur) 14 pre = pre->right; 15 if (pre->right == NULL) { 16 cout << cur->val << " "; 17 pre->right = cur; 18 cur = cur->left; 19 } 20 else { 21 pre->right = NULL; 22 cur = cur->right; 23 } 24 } 25 } 26 }
2.中序遍历:
递归:
1 void inOrderRecursive(TreeNode *root) { 2 if (!root) 3 return; 4 inOrderRecursive(root->left); 5 cout << root->val << " "; 6 inOrderRecursive(root->right); 7 }
迭代:
1.如果当前结点的左孩子不为空,则把当前结点的左孩子入栈,知道当前结点的左孩子为空;
2.如果栈不为空,则出栈,栈顶元素为当前结点,输出当前结点,并把当前结点的右孩子设为当前结点;
重复1,2直到当前结点为NULL且栈也为空;
1 void inOrderIterative(TreeNode *root) { 2 if (!root) 3 return; 4 stack<TreeNode*> stk; 5 TreeNode *cur = root; 6 while (cur || !stk.empty()) { 7 while (cur) { 8 stk.push(cur); 9 cur = cur->left; 10 } 11 if (!stk.empty()) { 12 cur = stk.top(); 13 stk.pop(); 14 cout << cur->val << " "; 15 cur = cur->right; 16 } 17 } 18 }
Morris方法:
和先序遍历的过程类似,只不过输出结点的位置不一样,中序遍历是在2.b中,也就是前驱结点的右孩子为当前结点时,即当前结点的左子树都已经遍历完成时,输出当前结点;
1 void inOrderMorris(TreeNode *root) { 2 if (!root) 3 return; 4 TreeNode* cur = root; 5 TreeNode* pre = NULL; 6 while (cur) { 7 if (cur->left == NULL) { 8 cout << cur->val << " "; 9 cur = cur->right; 10 } 11 else { 12 pre = cur->left; 13 while (pre->right != NULL && pre->right != cur) 14 pre = pre->right; 15 if (pre->right == NULL) { 16 pre->right = cur; 17 cur = cur->left; 18 } 19 else { 20 cout << cur->val << " "; 21 pre->right = NULL; 22 cur = cur->right; 23 } 24 } 25 } 26 }
3.后序遍历:
递归:
1 void postOrderRecursive(TreeNode *root) { 2 if (!root) 3 return; 4 postOrderRecursive(root->left); 5 postOrderRecursive(root->right); 6 cout << root->val << " "; 7 }
迭代:
后序遍历比先序、中序都要复杂,
第一种迭代方法,可以用两个栈来模拟递归的遍历;
栈1初始化时把根节点入栈,
1.栈1出栈,把出栈的元素加入栈2,然后把该元素的左孩子(如果不为空),右孩子(如果不为空)加入栈1,知道栈1为空;
2.栈2出栈直到空,每次出栈时输出栈顶元素;
通过两个栈,保证了栈2中的元素顺序,
第二种迭代方法,
用一个结点保存访问过的最后一个结点pre,如果pre为栈顶元素的右孩子,则说明栈顶元素的右子树已经遍历过了,直接输出栈顶元素,并把当前结点设为NULL,并更新pre为出栈的元素;
1.如果当前结点存在,则一直向左遍历,入栈遍历的元素,直到结点为空;
2.栈不为空时,出栈,当前结点为栈顶元素,
如果当前结点的右孩子不为空且不为pre,说明当前结点的右子树没有遍历过,设置当前结点为该节点的右孩子,
如果右孩子为空或者为pre,直接输出当前结点,更新pre为当前结点,并设当前结点为NULL,
重复1,2直到当前结点为NULL并且栈为空;
1 void postOrderIterative(TreeNode *root) { 2 if (!root) 3 return; 4 stack<TreeNode*> stk; 5 TreeNode *cur = root; 6 TreeNode *pre = NULL; 7 while (cur || !stk.empty()) { 8 while (cur) { 9 stk.push(cur); 10 cur = cur->left; 11 } 12 if (!stk.empty()) { 13 cur = stk.top(); 14 if (cur->right != NULL && cur->right != pre) { 15 cur = cur->right; 16 } 17 else { 18 cout << cur->val << " "; 19 pre = cur; 20 stk.pop(); 21 cur = NULL; 22 } 23 } 24 } 25 } 26 /* 27 * 双栈法 28 */ 29 void postOrderIterative1(TreeNode *root) { 30 if (!root) 31 return; 32 stack<TreeNode*> stk1, stk2; 33 TreeNode *cur; 34 stk1.push(root); 35 while (!stk1.empty()) { 36 cur = stk1.top(); 37 stk1.pop(); 38 stk2.push(cur); 39 if (cur->left) 40 stk1.push(cur->left); 41 if (cur->right) 42 stk1.push(cur->right); 43 } 44 while (!stk2.empty()) { 45 cout << stk2.top()->val << " "; 46 stk2.pop(); 47 } 48 }
Morris方法:
morris方法的后序遍历较为复杂,因为需要逆序输出右孩子到父亲结点;
遍历过程与先序与中序类似,
当前驱结点的右孩子为当前结点时,左子树已经遍历完成,逆序输出当前结点的左孩子到前驱结点;
类似于链表的反转,不过反转输出之后,记得要反转回来。
1 void reverse(TreeNode *begin, TreeNode *end) { 2 if (begin == end) 3 return; 4 TreeNode *pre = begin; 5 TreeNode *cur = begin->right; 6 TreeNode *next; 7 while (pre != end) { 8 temp = cur->right; 9 cur->right = pre; 10 pre = cur; 11 cur = temp; 12 } 13 } 14 15 void traversalReversal(TreeNode *begin, TreeNode *end) { 16 reverse(begin, end); 17 TreeNode *it = end; 18 while (true) { 19 cout << it->val << " "; 20 if (it == begin) 21 break; 22 it = it->right; 23 } 24 reverse(end, begin); 25 } 26 27 void postOrderMorris(TreeNode *root) { 28 if (!root) 29 return; 30 TreeNode dump(0); 31 dump.left = root; 32 TreeNode *cur = &dump; 33 TreeNode *pre = NULL; 34 while (cur) { 35 if (cur->left == NULL) { 36 cur = cur->right; 37 } 38 else { 39 pre = cur->left; 40 while (pre->right != NULL && pre->right != cur) 41 pre = pre->right; 42 if (pre->right == NULL) { 43 pre->right = cur; 44 cur = cur->left; 45 } 46 else { 47 traversalReverse(cur->left, pre); 48 pre->right = NULL; 49 cur = cur->right; 50 } 51 } 52 } 53 }
参考:
http://www.cnblogs.com/AnnieKim/archive/2013/06/15/MorrisTraversal.html