洛谷 P1122 最大子树和
题目描述
小明对数学饱有兴趣,并且是个勤奋好学的学生,总是在课后留在教室向老师请教一些问题。一天他早晨骑车去上课,路上见到一个老伯正在修剪花花草草,顿时想到了一个有关修剪花卉的问题。于是当日课后,小明就向老师提出了这个问题:
一株奇怪的花卉,上面共连有NN朵花,共有N-1N−1条枝干将花儿连在一起,并且未修剪时每朵花都不是孤立的。每朵花都有一个“美丽指数”,该数越大说明这朵花越漂亮,也有“美丽指数”为负数的,说明这朵花看着都让人恶心。所谓“修剪”,意为:去掉其中的一条枝条,这样一株花就成了两株,扔掉其中一株。经过一系列“修剪“之后,还剩下最后一株花(也可能是一朵)。老师的任务就是:通过一系列“修剪”(也可以什么“修剪”都不进行),使剩下的那株(那朵)花卉上所有花朵的“美丽指数”之和最大。
老师想了一会儿,给出了正解。小明见问题被轻易攻破,相当不爽,于是又拿来问你。
输入输出格式
输入格式:
第一行一个整数N(1 ≤ N ≤ 16000)N(1≤N≤16000)。表示原始的那株花卉上共NN朵花。
第二行有NN个整数,第II个整数表示第II朵花的美丽指数。
接下来N-1N−1行每行两个整数a,ba,b,表示存在一条连接第aa 朵花和第bb朵花的枝条。
输出格式:
一个数,表示一系列“修剪”之后所能得到的“美丽指数”之和的最大值。保证绝对值不超过21474836472147483647。
输入输出样例
说明
【数据规模与约定】
对于60\%60%的数据,有N≤1000N≤1000;
对于100\%100%的数据,有N≤16000N≤16000。
思路:树形DP双向边,数组开两倍。
#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #define MAXN 16010 using namespace std; int n,tot,ans; int f[MAXN]; int dis[MAXN],dad[MAXN]; int to[MAXN*2],net[MAXN*2],head[MAXN]; void add(int u,int v){ to[++tot]=v;net[tot]=head[u];head[u]=tot; } void dfs(int now){ f[now]=dis[now]; for(int i=head[now];i;i=net[i]) if(dad[now]!=to[i]){ dad[to[i]]=now; dfs(to[i]); f[now]+=max(0,f[to[i]]); } } int main(){ scanf("%d",&n); for(int i=1;i<=n;i++) scanf("%d",&dis[i]); for(int i=1;i<n;i++){ int u,v; scanf("%d%d",&u,&v); add(u,v);add(v,u); } dfs(1); for(int i=1;i<=n;i++) ans=max(ans,f[i]); cout<<ans; }
细雨斜风作晓寒。淡烟疏柳媚晴滩。入淮清洛渐漫漫。
雪沫乳花浮午盏,蓼茸蒿笋试春盘。人间有味是清欢。