深度学习(九) 深度学习最全优化方法总结比较(SGD,Momentum,Nesterov Momentum,Adagrad,Adadelta,RMSprop,Adam)

前言

这里讨论的优化问题指的是,给定目标函数f(x),我们需要找到一组参数x(权重),使得f(x)的值最小。

本文以下内容假设读者已经了解机器学习基本知识,和梯度下降的原理。

 

SGD

SGD指stochastic gradient descent,即随机梯度下降。是梯度下降的batch版本。

对于训练数据集,我们首先将其分成n个batch,每个batch包含m个样本。我们每次更新都利用一个batch的数据,而非整个训练集。即:

 

其中,η为学习率,gt为x在t时刻的梯度。 

这么做的好处在于:

  • 当训练数据太多时,利用整个数据集更新往往时间上不显示。batch的方法可以减少机器的压力,并且可以更快地收敛。
  • 当训练集有很多冗余时(类似的样本出现多次),batch方法收敛更快。以一个极端情况为例,若训练集前一半和后一半梯度相同。那么如果前一半作为一个batch,后一半作为另一个batch,那么在一次遍历训练集时,batch的方法向最优解前进两个step,而整体的方法只前进一个step。

 

Momentum

SGD方法的一个缺点是,其更新方向完全依赖于当前的batch,因而其更新十分不稳定。解决这一问题的一个简单的做法便是引入momentum。

momentum即动量,它模拟的是物体运动时的惯性,即更新的时候在一定程度上保留之前更新的方向,同时利用当前batch的梯度微调最终的更新方向。这样一来,可以在一定程度上增加稳定性,从而学习地更快,并且还有一定摆脱局部最优的能力:

其中,ρ 即momentum,表示要在多大程度上保留原来的更新方向,这个值在0-1之间,在训练开始时,由于梯度可能会很大,所以初始值一般选为0.5;当梯度不那么大时,改为0.9。η 是学习率,即当前batch的梯度多大程度上影响最终更新方向,跟普通的SGD含义相同。ρ 与 η 之和不一定为1。

 

 

Nesterov Momentum

这是对传统momentum方法的一项改进,由Ilya Sutskever(2012 unpublished)在Nesterov工作的启发下提出的。

  Nesterov Momentum

 

首先,按照原来的更新方向更新一步(棕色线),然后在该位置计算梯度值(红色线),然后用这个梯度值修正最终的更新方向(绿色线)。上图中描述了两步的更新示意图,其中蓝色线是标准momentum更新路径。

公式描述为:

 

Adagrad 

Adagrad其实是对学习率进行了一个约束。即:

 

此处,对g_t从1到t进行一个递推形成一个约束项regularizer,-\frac{1}{\sqrt{\sum_{r=1}^t(g_r)^2+\epsilon}},\epsilon用来保证分母非0

特点:

  • 前期g_t较小的时候, regularizer较大,能够放大梯度
  • 后期g_t较大的时候,regularizer较小,能够约束梯度
  • 适合处理稀疏梯度

缺点:

  • 由公式可以看出,仍依赖于人工设置一个全局学习率 
  • \eta设置过大的话,会使regularizer过于敏感,对梯度的调节太大
  • 中后期,分母上梯度平方的累加将会越来越大,使gradient\to0,使得训练提前结束

 

 

Adadelta 

Adadelta是对Adagrad的扩展,最初方案依然是对学习率进行自适应约束,但是进行了计算上的简化。Adagrad会累加之前所有的梯度平方,而Adadelta只累加固定大小的项,并且也不直接存储这些项,仅仅是近似计算对应的平均值。即:

n_t=\nu*n_{t-1}+(1-\nu)*g_t^2

 

\Delta{\theta_t} = -\frac{\eta}{\sqrt{n_t+\epsilon}}*g_t

在此处Adadelta其实还是依赖于全局学习率的,但是作者做了一定处理,经过近似牛顿迭代法(求根点)之后:

E|g^2|_t=\rho*E|g^2|_{t-1}+(1-\rho)*g_t^2

\Delta{x_t}=-\frac{\sqrt{\sum_{r=1}^{t-1}\Delta{x_r}}}{\sqrt{E|g^2|_t+\epsilon}}

 

 

其中,E代表求期望。 

 

此时,可以看出Adadelta已经不用依赖于全局学习率了。 

特点:

  • 训练初中期,加速效果不错,很快 
  • 训练后期,反复在局部最小值附近抖动

 

RMSprop 

RMSprop可以算作Adadelta的一个特例: 

\rho=0.5时,E|g^2|_t=\rho*E|g^2|_{t-1}+(1-\rho)*g_t^2就变为了求梯度平方和的平均数。

如果再求根的话,就变成了RMS(均方根): 

RMS|g|_t=\sqrt{E|g^2|_t+\epsilon}

此时,这个RMS就可以作为学习率\eta的一个约束:

\Delta{x_t}=-\frac{\eta}{RMS|g|_t}*g_t

特点:

  • 其实RMSprop依然依赖于全局学习率 
  • RMSprop算是Adagrad的一种发展,和Adadelta的变体,效果趋于二者之间
  • 适合处理非平稳目标- 对于RNN效果很好

 

Adam 

Adam(Adaptive Moment Estimation)本质上是带有动量项的RMSprop,它利用梯度的一阶矩估计和二阶矩估计动态调整每个参数的学习率。Adam的优点主要在于经过偏置校正后,每一次迭代学习率都有个确定范围,使得参数比较平稳。公式如下:

m_t=\mu*m_{t-1}+(1-\mu)*g_t

   

n_t=\nu*n_{t-1}+(1-\nu)*g_t^2

 

\hat{m_t}=\frac{m_t}{1-\mu^t}

 

\hat{n_t}=\frac{n_t}{1-\nu^t}

  

\Delta{\theta_t}=-\frac{\hat{m_t}}{\sqrt{\hat{n_t}}+\epsilon}*\eta

 

其中,m_tn_t分别是对梯度的一阶矩估计和二阶矩估计,u和v为衰减率,u通常为0.9,v通常为0.999,可以看作对期望E|g_t|E|g_t^2|的估计;\hat{m_t}\hat{n_t}是对m_tn_t的校正,这样可以近似为对期望的无偏估计。可以看出,直接对梯度的矩估计对内存没有额外的要求,而且可以根据梯度进行动态调整,而-\frac{\hat{m_t}}{\sqrt{\hat{n_t}}+\epsilon}对学习率形成一个动态约束,而且有明确的范围。

 

特点:

  • 结合了Adagrad善于处理稀疏梯度和RMSprop善于处理非平稳目标的优点 
  • 对内存需求较小 
  • 为不同的参数计算不同的自适应学习率 
  • 也适用于大多非凸优化- 适用于大数据集和高维空间

 

posted @ 2018-01-16 22:08  下路派出所  阅读(17124)  评论(0编辑  收藏  举报