FAIR-Detectron 开源代码

先贴上链接:https://github.com/facebookresearch/Detectron

。。。Install Caffe2 就问题一大堆了。。。。

首先是下载完caffe2工程后,第一步的make ,就出现“Protocol "https" not supported or disabled in libcurl” 试了很多方法,都不管用,哎。

应该是curl的问题,不管了,反正系统已经重装了,现在一切正常,比以前还顺溜~




 

装个这玩意让我火大。直接重装系统!!!!! 

全新的系统:Ubuntu14.04!!!

显卡:GTX 1080

本以为重装系统的话,cuda这玩意又要倒腾很久,已经做好了长期奋战的准备,结果 - -  时代在进步啊,要是当年有这么好装的话,我也不用装大半个月了。

废话不多说,总结下今天安装 caffe2 的过程。

一、 首先下载依赖项:

sudo apt-get update
sudo apt-get install -y --no-install-recommends \
      build-essential \
      cmake \
      git \
      libgoogle-glog-dev \
      libgtest-dev \
      libiomp-dev \
      libleveldb-dev \
      liblmdb-dev \
      libopencv-dev \
      libopenmpi-dev \
      libsnappy-dev \
      libprotobuf-dev \
      openmpi-bin \
      openmpi-doc \
      protobuf-compiler \
      python-dev \
      python-pip                          
sudo pip install \
      future \
      numpy \
      protobuf

这里有个很重要的一步,可能会导致下面的pip安装失败以及opencv-python>=3.0无法安装:

sudo pip install --upgrade pip

那就是升级pip !!!!!!!!

 

对于ubuntu14.04 和 ubuntu16.04 两个系统要分别下不同的文件:

# for Ubuntu 14.04
sudo apt-get install -y --no-install-recommends libgflags2
# for Ubuntu 16.04
sudo apt-get install -y --no-install-recommends libgflags-dev

========================以下是需要GPU的安装步骤,如果直接用CPU那么就跳过=================================

精彩的地方来了,这步安装cuda,简直是从 王者排位赛 一下子到 简单人机啊 !!.

我的是ubuntu14.04,所以按照这个步骤来:

sudo apt-get update && sudo apt-get install wget -y --no-install-recommends
wget "http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1404/x86_64/cuda-repo-ubuntu1404_8.0.61-1_amd64.deb"
sudo dpkg -i cuda-repo-ubuntu1404_8.0.61-1_amd64.deb
sudo apt-get update
sudo apt-get install cuda

对于16.04的系统,执行下面的步骤:

sudo apt-get update && sudo apt-get install wget -y --no-install-recommends
wget "http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cuda-repo-ubuntu1604_8.0.61-1_amd64.deb"
sudo dpkg -i cuda-repo-ubuntu1604_8.0.61-1_amd64.deb
sudo apt-get update
sudo apt-get install cuda

CUDA就这么安装好了!!!!我都不敢相信

 

接下来装cudnn5.1或者6.0都行

CUDNN_URL="http://developer.download.nvidia.com/compute/redist/cudnn/v5.1/cudnn-8.0-linux-x64-v5.1.tgz"
wget ${CUDNN_URL}
sudo tar -xzf cudnn-8.0-linux-x64-v5.1.tgz -C /usr/local
rm cudnn-8.0-linux-x64-v5.1.tgz && sudo ldconfig

完全不用了解中间涉及了什么,反正就这么装好了?!!!

=======================================================================================================

二、下载和编译caffe2

git clone --recursive https://github.com/caffe2/caffe2.git && cd caffe2
make && cd build && sudo make install

注意看我用耀眼的红色标注出来的部分, --recursive  递归的意思,加上这个指令可以把third_party里面的文件一次性统统下载好。否则的话 third_party这个文件夹里就是空的! (直接从caffe2/caffe2.git 网页上下载的话,也会缺失third_party内的文件)

第一条语句执行完成后,会在你执行这条语句的路径位置得到一个  caffe2 文件夹 ,&& cd caffe2 这个操作就是进入该文件夹内(如果直接浏览器下载 caffe2-master.zip,解压出来的文件夹名为caffe2-master)

然后就是make (最好是 make -j32 多线程编译会更快些),会生成一个build文件夹,cd build && sudo make install 这样caffe2就安装完成了!!!

 

三、测试caffe2是否安装成功:

这里需要注意,在Install文档后面也有补充,那就是这里的 caffe2.python 是指的在caffe2/build/ 下面的 caffe2 文件夹下的 python 文件夹。

可以在两种方法下执行下面的指令

1.进入 caffe2/python 这个文件夹下,然后再在终端中执行下面的指令

2.命令行中执行: export PYTHONPATH=/home/ username /caffe2/python:PYTHONPATH             这样系统在执行python文件时,会自动包含这个路径,那就可以在任意路径下执行下面的语句了。

python -c 'from caffe2.python import core' 2>/dev/null && echo "Success" || echo "Failure"

如果安装成功,会返回 Success ,否则就是Failure .

 如果是GPU用户的话,还需要多执行一条测试指令:

python -m caffe2.python.operator_test.relu_op_test

可能会出现    ImportError: No module named hypothesis  不要紧张,sudo pip install hypothesis 。安装完后再试试上面的,应该就可以了。

最后建议将上面的路径都添加进 ~/.bashrc 文件的最后,这样就不用每次使用caffe2的时候都执行一次 export PYTHONPATH = 。。。。 了

sudo gedit ~/.bashrc  #如果没装过 gedit ,先执行 sudo apt-get install gedit

在文件的末尾处添加如下语句:

export PYTHONPATH=/usr/local:$PYTHONPATH
export PYTHONPATH=/home/username/caffe2/build/caffe2/python:$PYTHONPATH
export PYTHONPATH=/home/username/caffe2/build:$PYTHONPATH
export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH

保存后,执行 source ~/.bashrc 使之生效。

到这里,caffe2 算是大功告成了。

 



 

插入段,我想既然caffe2已经把cuda装好了,那么是不是意味着我也可以直接装caffe呢。 是的!!

第一步也是安装依赖项,可能和caffe2有重复的,不管,这一步都输进去

sudo apt-get install freeglut3-dev build-essential libx11-dev libxmu-dev  libxi-dev libgl1-mesa-glx libglu1-mesa libglu1-mesa-dev

接着在 ~/.bashrc文件末尾添加下面指令:

export  PATH=/usr/local/cuda-8.0/bin:$PATH

然后是添加共享库变量,这一步在caffe2中没有用到,但是想通过caffe必须添加:

#在/etc/ld.so.conf.d/ 文件夹下新建 cuda.conf 文件,并添加内容:
/usr/local/cuda-8.0/lib64

保存后,使指令生效:

sudo ldconfig

好了,终于到caffe编译这一步了。我把我的Makefile.config文件贴下,红色标注是我修改的地方:

## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome!

# cuDNN acceleration switch (uncomment to build with cuDNN).
USE_CUDNN := 1

# CPU-only switch (uncomment to build without GPU support).
# CPU_ONLY := 1

# uncomment to disable IO dependencies and corresponding data layers
# USE_OPENCV := 0
# USE_LEVELDB := 0
# USE_LMDB := 0

# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
#    You should not set this flag if you will be reading LMDBs with any
#    possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1

# Uncomment if you're using OpenCV 3
# OPENCV_VERSION := 3

# To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++

# CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr

# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.
# For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.
# For CUDA >= 9.0, comment the *_20 and *_21 lines for compatibility.
CUDA_ARCH :=-gencode arch=compute_30,code=sm_30 \
        -gencode arch=compute_35,code=sm_35 \
        -gencode arch=compute_50,code=sm_50 \
        -gencode arch=compute_52,code=sm_52 \
        -gencode arch=compute_60,code=sm_60 \
        -gencode arch=compute_61,code=sm_61 \
        -gencode arch=compute_61,code=compute_61

# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := atlas
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas

# Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib

# This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app

# NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
PYTHON_INCLUDE := /usr/include/python2.7 \
        /usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
# ANACONDA_HOME := $(HOME)/anaconda
# PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
        # $(ANACONDA_HOME)/include/python2.7 \
        # $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include

# Uncomment to use Python 3 (default is Python 2)
# PYTHON_LIBRARIES := boost_python3 python3.5m
# PYTHON_INCLUDE := /usr/include/python3.5m \
#                 /usr/lib/python3.5/dist-packages/numpy/core/include

# We need to be able to find libpythonX.X.so or .dylib.
PYTHON_LIB := /usr/lib
# PYTHON_LIB := $(ANACONDA_HOME)/lib

# Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib

# Uncomment to support layers written in Python (will link against Python libs)
WITH_PYTHON_LAYER := 1

# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib

# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib

# NCCL acceleration switch (uncomment to build with NCCL)
# https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)
# USE_NCCL := 1

# Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1

# N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute

# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1

# The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := 0

# enable pretty build (comment to see full commands)
Q ?= @

只有两处,随后:

make all -j32
make test -j32
make runtest -j32

最后来测试下,跑个MNIST数据集:

#下载数据集
./data/mnist/get_mnist.sh
#生成LMDB文件
./example/mnist/create_mnist.sh
#训练
./example/mnist/train_lenet.sh


 四、其他依赖项安装

①Python的依赖项:(这里之前一定要先升级pip,否则会安装失败)

pip install numpy pyyaml matplotlib opencv-python>=3.0 setuptools Cython mock

②COCO API安装:

# COCOAPI=/path/to/clone/cocoapi
git clone https://github.com/cocodataset/cocoapi.git $COCOAPI
cd $COCOAPI/PythonAPI
# Install into global site-packages
make install

五、Detectron 安装

# DETECTRON=/path/to/clone/detectron
git clone https://github.com/facebookresearch/detectron $DETECTRON
cd $DETECTRON/lib && make
cd ~
python2 $DETECTRON/tests/test_spatial_narrow_as_op.py

 如果到这里都没有问题的话,那么就可以Inference with Pretrained Models了;

cd Detectrom-master
python2 tools/infer_simple.py \
    --cfg configs/12_2017_baselines/e2e_mask_rcnn_R-101-FPN_2x.yaml \
    --output-dir /tmp/detectron-visualizations \
    --image-ext jpg \
    --wts https://s3-us-west-2.amazonaws.com/detectron/35861858/12_2017_baselines/e2e_mask_rcnn_R-101-FPN_2x.yaml.02_32_51.SgT4y1cO/output/train/coco_2014_train:coco_2014_valminusminival/generalized_rcnn/model_final.pkl \
    demo

程序运行结束后,会在/tmp/detection-visualizations 文件夹下以PDF的格式输出预测结果,下面是一个例子

INPUT:

OUTPUT:




六、下面开始下载COCO数据集

mkdir data &&cd data
wget http://images.cocodataset.org/zips/test2014.zip
wget http://images.cocodataset.org/zips/train2014.zip
wget http://images.cocodataset.org/zips/val2014.zip

解压后,按如下格式存放:

coco
|_ coco_train2014
|  |_ <im-1-name>.jpg
|  |_ ...
|  |_ <im-N-name>.jpg
|_ coco_val2014
|_ ...
|_ annotations
   |_ instances_train2014.json
   |_ ...

(这里注意,我下载完后还缺 " annotations/instances_minival2014.json " ,需要额外下载,并放在 annotations 文件夹下: https://s3-us-west-2.amazonaws.com/detectron/coco/coco_annotations_minival.tgz)

然后和Detectron项目建立软连接,注意这里一定要是绝对路径!以我的为例:

ln -s /home/cc/data/coco /home/cc/Detectron-master/lib/dataset/data/coco

 至此,整个Detectron项目都已经配置完毕!!!开始飞翔吧

Ps: 如果想用Detectron在自己的数据集上训练一个模型,最好是把annotation转换成 COCO json Format .然后将新的数据集路径添加到 lib/datasets/dataset_catalog.py 中。

posted on 2018-01-26 15:33  caffeauto  阅读(705)  评论(0编辑  收藏  举报

导航