Xen源代码分析(一)——head.s

      启动汇编部分代码是xen 的引导启动程序,位于./xen/arch/x86/boot目录下。代码描述了从xen加载到调用第一个C函数“__start_xen”之间的初始化系统环境过程。主要涉及的文件流程为head.S->trampoline.S->x86_32.s,其中head.s为冲GRUB进入XEN的入口文件,首先看看head.s部分都做了什么(只看32位体系)。

/* 只能由 grub 来引导,head.S 是从GRUB进入XEN 的入口文件;
开始执行的第一个汇编文件,包括初始化页表,解析早期命令行参数等工作
*/
#include <xen/config.h>
#include <xen/multiboot.h>
#include <public/xen.h>
#include <asm/asm_defns.h>
#include <asm/desc.h>
#include <asm/page.h>
#include <asm/msr.h>
        .text
        .code32
/*当xen运行时,cpu已经处于保护模式了,和LINUX内核的处理方式一致,虚拟地址等于物理地址加上固定值*/
/*在xen\include\asm-x86\x86_32\page.h中有__XEN_VIRT_START的定义*/
#define sym_phys(sym)     ((sym) - __XEN_VIRT_START)

/**
*xen 编译时的映像布局由xen\arch\x86\xen.lds.S 控制:
	...
#ifdef __x86_64__
#define FORMAT "elf64-x86-64"
#else
#define FORMAT "elf32-i386"
#endif

ENTRY(start)

#endif 

OUTPUT_FORMAT(FORMAT, FORMAT, FORMAT)

#ifdef __x86_64__
OUTPUT_ARCH(i386:x86-64)
#else
OUTPUT_ARCH(i386)
#endif

PHDRS
{
  text PT_LOAD ;
}
SECTIONS
{
  . = __XEN_VIRT_START + 0x100000;
  _start = .;
  .text : {
        _stext = .;            //Text and read-only data 
       *(.text)
       *(.text.cold)
       *(.text.unlikely)
       *(.fixup)
       *(.gnu.warning)
       _etext = .;             //End of text section 
  } :text = 0x9090
  		...
**/

/*根据INTEL手册GDT第一项无用,故而从0x08开始*/
/*ring0,code,32-bit mode*/
#define BOOT_CS32        0x0008

/*ring0,code,64-bit mode*/
#define BOOT_CS64        0x0010

/*ring0,data*/
#define BOOT_DS          0x0018

/*real-mode code*/
#define BOOT_PSEUDORM_CS 0x0020

/*5 real-mode data*/
#define BOOT_PSEUDORM_DS 0x0028

ENTRY(start)
        jmp     __start

        .align 4
/*** MULTIBOOT HEADER ****/
#define MULTIBOOT_HEADER_FLAGS (MULTIBOOT_HEADER_MODS_ALIGNED | \
                                MULTIBOOT_HEADER_WANT_MEMORY)
        /* Magic number indicating a Multiboot header. */
        .long   MULTIBOOT_HEADER_MAGIC
        /* Flags to bootloader (see Multiboot spec). */
        .long   MULTIBOOT_HEADER_FLAGS
        /* Checksum: must be the negated sum of the first two fields. */
        .long   -(MULTIBOOT_HEADER_MAGIC + MULTIBOOT_HEADER_FLAGS)
/**
* 上面的定义是给grub看的,表明支持multiboot, 详细内容见multiboot协议
**/
        .section .init.text, "ax"
        
/*.asciz is just like .ascii, but each string is followed by a zero 
byte.*/
.Lbad_cpu_msg: .asciz "ERR: Not a 64-bit CPU!"
.Lbad_ldr_msg: .asciz "ERR: Not a Multiboot bootloader!"

bad_cpu:/*打印bad cpu错误*/
        mov     $(sym_phys(.Lbad_cpu_msg)),%esi # Error message
        jmp     print_err
not_multiboot:/*打印非多启动错误*/
        mov     $(sym_phys(.Lbad_ldr_msg)),%esi # Error message
print_err:/*这里的打印用的是最基本的往显卡缓存写入数据的方式*/
        mov     $0xB8000,%edi  # VGA framebuffer
1:      mov     (%esi),%bl
        test    %bl,%bl        # Terminate on '\0' sentinel
2:      je      2b
        mov     $0x3f8+5,%dx   # UART Line Status Register
3:      in      %dx,%al
        test    $0x20,%al      # Test THR Empty flag
        je      3b
        mov     $0x3f8+0,%dx   # UART Transmit Holding Register
        mov     %bl,%al
        out     %al,%dx        # Send a character over the serial line
        movsb                  # Write a character to the VGA framebuffer
        mov     $7,%al
        stosb                  # Write an attribute to the VGA framebuffer
        jmp     1b

gdt_boot_descr:/*GDT定义,传统模式下的全局描述符表寄存器(GDTR)长48位,由16位的界限和32位的基地址构成。由于段描述符总是8字节长,故界限的值应为8N-1。
		Trampoline_gdt共定义了6个描述符项,界限是6*8-1。*/
        .word   6*8-1
        .long   sym_phys(trampoline_gdt)

__start:
        cld
        cli
	
        /* Initialise GDT and basic data segments. */
        lgdt    %cs:sym_phys(gdt_boot_descr)
        mov     $BOOT_DS,%ecx
        mov     %ecx,%ds
        mov     %ecx,%es
        mov     %ecx,%ss
	/*
	验证并存储多重启动信息,详见“多重启动规范”。
	当boot loader引导32位操作系统的时候,机器必须有如下的状态:
	EAX:
	必须包含魔数0X2BADB002,这个值告诉操作系统目前它是由兼容的Multiboot 的boot loader引导的。
	EBX:
	必须包含boot loader提供的多重引导信息结构的32位物理地址。
	CS: 
	必须是32位的读/执行的代码段,偏移是0以及界限是 0XFFFFFFFF。具体值没有定义。
	SS:
	必须是32位的读/执行数据段,偏移是0以及界限是 0XFFFFFFFF。具体值没有定义。
	A20 GATE : 
	必须enable。
	CR0: 
	31位(PG)必须清除,第0位(PE)必须设置。其他位没有定义。
	EFLAGS: 
	第17(VM)位必须清除,第9位(IF)必须清除,其他位没有定义。
	*/
        /* Check for Multiboot bootloader */
        cmp     $0x2BADB002,%eax
        jne     not_multiboot

        /* Set up trampoline segment 64k below EBDA */
        movzwl  0x40e,%eax          /* EBDA segment */
        cmp     $0xa000,%eax        /* sanity check (high) */
        jae     0f
        cmp     $0x4000,%eax        /* sanity check (low) */
        jae     1f
0:
        movzwl  0x413,%eax          /* use base memory size on failure */
        shl     $10-4,%eax
1:
        sub     $0x1000,%eax

        /* From arch/x86/smpboot.c: start_eip had better be page-aligned! */
        xor     %al, %al
        shl     $4, %eax
        mov     %eax,sym_phys(trampoline_phys)

        /* Save the Multiboot info struct (after relocation) for later use. */
        mov     $sym_phys(cpu0_stack)+1024,%esp
        push    %ebx
        call    reloc
        mov     %eax,sym_phys(multiboot_ptr)

        /* Initialize BSS (no nasty surprises!) */
        /*初始化BSS段,存放程序中未初始化的全局变量。
		BSS段在xen\arch\x86\x86_32\xen.lds.S中定义*/
        mov     $sym_phys(__bss_start),%edi
        mov     $sym_phys(_end),%ecx
        sub     %edi,%ecx
        xor     %eax,%eax
        rep     stosb

/*
查询并保存CPU拓展信息。
CPUID指令可提供关于处理器的实现及其能力的完整信息,任意特权级的软件都可以使用它。
EAX寄存器用于决定CPUID生成什么信息
EAX = 0x80000000,返回信息: 
EAX: Maximum Input Value for Extended Function CPUID Information. PIV之后的CPU,均大于0x80000000
EBX: Reserved
ECX: Reserved
EDX: Reserved
EAX = 0x80000001,返回信息: 
EAX:     Extended Processor Signature and Feature Bits.
EBX:       Reserved
ECX:       Bit 0: LAHF/SAHF available in 64-bit mode
Bits 31-1 Reserved
EDX:      Bits 10-0: Reserved
Bit 11: SYSCALL/SYSRET available (when in 64-bit mode)
Bits 19-12: Reserved = 0
Bit 20: Execute Disable Bit available
Bits 28-21: Reserved = 0
Bit 29: Intel? 64 Architecture available if 1
Bits 31-30: Reserved = 0
cpuid_ext_features在xen\arch\x86\boot\trampoline.S中定义。boot_cpu_data在\xen\include\asm-x86 \ processor.h中定义,是cpuinfo_x86的实例。
CPUINFO86_ext_features 在xen\arch\x86\x86_32 \ asm-offsets.c中定义:OFFSET(CPUINFO86_ext_features, struct cpuinfo_x86, x86_capability[1]); 
OFFSET解释如下:
         #define offsetof (s, m) (size_t)&(((s*)0)->m)
		m为结构体s中的一项,返回m距结构体起始地址的偏移量。ANSI C中常数0允许转换成任何类型的指针,但转换后指针为NULL。例中&(((s*)0)->m)这一步,并不访问m元素,只是获取m的地址,编译时不生成访问m的代码。
         #define DEFINE(_sym,_val)  __asm__  __volatile__  (“\n->” #_sym “%0” #_val:: “i”(_val))
          #是注释符号;%0是占位符,这里指代“i”(_val)。
         #define OFFSET(_sym, _str, _mem)  DEFINE(_sym, offsetof(_str, _mem))
         这条宏是将_str结构体的_mem项的偏移量赋值给_sym。
*/
        /* Interrogate CPU extended features via CPUID. */
        mov     $0x80000000,%eax
        cpuid
        xor     %edx,%edx
        cmp     $0x80000000,%eax    # any function > 0x80000000?
        jbe     1f
        mov     $0x80000001,%eax
        cpuid
1:      mov     %edx,sym_phys(cpuid_ext_features)
        mov     %edx,sym_phys(boot_cpu_data)+CPUINFO86_ext_features

#if defined(__x86_64__)
        /* Check for availability of long mode. */
        bt      $29,%edx
        jnc     bad_cpu
        /* Initialise L2 identity-map and xen page table entries (16MB). */
        mov     $sym_phys(l2_identmap),%edi
        mov     $sym_phys(l2_xenmap),%esi
        mov     $sym_phys(l2_bootmap),%edx
        mov     $0x1e3,%eax                  /* PRESENT+RW+A+D+2MB+GLOBAL */
        mov     $8,%ecx
1:      mov     %eax,(%edi)
        add     $8,%edi
        mov     %eax,(%esi)
        add     $8,%esi
        mov     %eax,(%edx)
        add     $8,%edx
        add     $(1<<L2_PAGETABLE_SHIFT),%eax
        loop    1b
        /* Initialise L3 identity-map page directory entries. */
        mov     $sym_phys(l3_identmap),%edi
        mov     $(sym_phys(l2_identmap)+7),%eax
        mov     $4,%ecx
1:      mov     %eax,(%edi)
        add     $8,%edi
        add     $PAGE_SIZE,%eax
        loop    1b
        /* Initialise L3 xen-map page directory entry. */
        mov     $(sym_phys(l2_xenmap)+7),%eax
        mov     %eax,sym_phys(l3_xenmap) + l3_table_offset(XEN_VIRT_START)*8
        /* Initialise L3 boot-map page directory entry. */
        mov     $(sym_phys(l2_bootmap)+7),%eax
        mov     %eax,sym_phys(l3_bootmap) + 0*8
        /* Hook identity-map, xen-map, and boot-map L3 tables into PML4. */
        mov     $(sym_phys(l3_bootmap)+7),%eax
        mov     %eax,sym_phys(idle_pg_table) + 0*8
        mov     $(sym_phys(l3_identmap)+7),%eax
        mov     %eax,sym_phys(idle_pg_table) + l4_table_offset(DIRECTMAP_VIRT_START)*8
        mov     $(sym_phys(l3_xenmap)+7),%eax
        mov     %eax,sym_phys(idle_pg_table) + l4_table_offset(XEN_VIRT_START)*8
#else
/*32位下2M页面大小,开PAE方式映射,在这里我们也看出32位内核为XEN需要开启PAE,初始化页表,
将线性空间的0-12M和__PAGE_OFFSET-__PAGE_OFFSET+12M都映射到物理地址的0-12M;而将线性空间的12M-16M映射到物理地址的12M-16M(注意,这时并没有启用分页机制):
*/
        /* Initialize low and high mappings of memory with 2MB pages */
        mov     $sym_phys(idle_pg_table_l2),%edi
        mov     $0xe3,%eax                   /* PRESENT+RW+A+D+2MB */
1:      mov     %eax,__PAGE_OFFSET>>18(%edi) /* high mapping */
        stosl                                /* low mapping */
        add     $4,%edi
        add     $(1<<L2_PAGETABLE_SHIFT),%eax
        cmp     $DIRECTMAP_PHYS_END+0xe3,%eax
        jne     1b
1:      stosl   /* low mappings cover up to 16MB */
        add     $4,%edi
        add     $(1<<L2_PAGETABLE_SHIFT),%eax
        cmp     $(16<<20)+0xe3,%eax
        jne     1b
#endif

        /* Initialize 4kB mappings of first 2MB or 4MB of memory. */
        mov     $sym_phys(l1_identmap),%edi
        mov     $0x263,%eax                  /* PRESENT+RW+A+D+SMALL_PAGES */
#if defined(__x86_64__)
        or      $0x100,%eax                  /* GLOBAL */
#endif
        xor     %ecx,%ecx
1:      stosl
        add     $4,%edi
        add     $PAGE_SIZE,%eax
        inc     %ecx
        /* VGA hole (0xa0000-0xc0000) should be mapped UC. */
        cmp     $0xa0,%ecx
        jne     2f
        or      $0x10,%eax                   /* +PCD */
2:      cmp     $0xc0,%ecx
        jne     2f
        and     $~0x10,%eax                  /* -PCD */
2:      cmp     $L1_PAGETABLE_ENTRIES,%ecx
        jne     1b
        sub     $(PAGE_SIZE-0x63),%edi
#if defined(__x86_64__)
        mov     %edi,sym_phys(l2_identmap)
        mov     %edi,sym_phys(l2_xenmap)
        mov     %edi,sym_phys(l2_bootmap)
#else
        mov     %edi,sym_phys(idle_pg_table_l2)
        mov     %edi,sym_phys(idle_pg_table_l2) + (__PAGE_OFFSET>>18)
#endif

        /* Apply relocations to bootstrap trampoline. */
        mov     sym_phys(trampoline_phys),%edx
        mov     $sym_phys(__trampoline_rel_start),%edi
        mov     %edx,sym_phys(trampoline_phys)
1:
        mov     (%edi),%eax
        add     %edx,(%edi,%eax)
        add     $4,%edi
        cmp     $sym_phys(__trampoline_rel_stop),%edi
        jb      1b

        /* Patch in the trampoline segment. */
        shr     $4,%edx
        mov     $sym_phys(__trampoline_seg_start),%edi
1:
        mov     (%edi),%eax
        mov     %dx,(%edi,%eax)
        add     $4,%edi
        cmp     $sym_phys(__trampoline_seg_stop),%edi
        jb      1b

        call    cmdline_parse_early

        /* Switch to low-memory stack.  */
        mov     sym_phys(trampoline_phys),%edi
        lea     0x10000(%edi),%esp
        lea     trampoline_boot_cpu_entry-trampoline_start(%edi),%eax
        pushl   $BOOT_CS32
        push    %eax

        /* Copy bootstrap trampoline to low memory, below 1MB. */
        mov     $sym_phys(trampoline_start),%esi
        mov     $trampoline_end - trampoline_start,%ecx
        rep     movsb

        /* Jump into the relocated trampoline. */
        /*由上面的push代码段和IP后在这里执行ret相当于两个pop指令,直接跳转到trampoline.s中*/
        lret

#include "cmdline.S"

reloc:
#include "reloc.S"

        .align 16
        .globl trampoline_start, trampoline_end
/*第二阶段初始化,实模式*/
trampoline_start:
#include "trampoline.S"
trampoline_end:

        .text
/*第三阶段初始化*/
__high_start:
#ifdef __x86_64__
#include "x86_64.S"
#else
#include "x86_32.S"
#endif

 

posted @ 2012-11-15 09:38  GOD!  阅读(5401)  评论(0编辑  收藏  举报