基于Flume+LOG4J+Kafka的日志采集架构方案
本文将会介绍如何使用 Flume、log4j、Kafka进行规范的日志采集。
Flume 基本概念
Flume是一个完善、强大的日志采集工具,关于它的配置,在网上有很多现成的例子和资料,这里仅做简单说明不再详细赘述。
Flume包含Source、Channel、Sink三个最基本的概念:
Source——日志来源,其中包括:Avro Source、Thrift Source、Exec Source、JMS Source、Spooling Directory Source、Kafka Source、NetCat Source、Sequence Generator Source、Syslog Source、HTTP Source、Stress Source、Legacy Source、Custom Source、Scribe Source以及Twitter 1% firehose Source。
Channel——日志管道,所有从Source过来的日志数据都会以队列的形式存放在里面,它包括:Memory Channel、JDBC Channel、Kafka Channel、File Channel、Spillable Memory Channel、Pseudo Transaction Channel、Custom Channel。
Sink——日志出口,日志将通过Sink向外发射,它包括:HDFS Sink、Hive Sink、Logger Sink、Avro Sink、Thrift Sink、IRC Sink、File Roll Sink、Null Sink、HBase Sink、Async HBase Sink、Morphline Solr Sink、Elastic Search Sink、Kite Dataset Sink、Kafka Sink、Custom Sink。
基于Flume的日志采集是灵活的,我们可以看到既有Avro Sink也有Avro Source,既有Thrift Sink也有Thrift Source,这意味着我们可以将多个管道处理串联起来,如下图所示:
串联的意义在于,我们可以将多个管道合并到一个管道中最终输出到同一个Sink中去,如下图:
上面讲述了Source和Sink的作用,而Channel的作用在于处理不同的Sink,假设我们一个Source要对应多个Sink,则只需要为一个Source建立多个Channel即可,如下所示:
一个Source如果想要输出到多个Sink中去,就需要建立多个Channel进行介入并最终输出,通过上面这几张图,我们可以很好的理解Flume的运行机制,我们在这里也就点到为止,详细的配置可以在官网或者在网上搜索到、查看到。
一般情况下,我们使用 Exec Source对log文件进行监控,这样做确实是比较简单,但是并不方便,我们需要在每一台要监控的服务器上部署Flume,对运维来讲万一目标日志文件发生IO异常(例如格式改变、文件名改变、文件被锁),也是很痛苦的,因此我们最好能让日志直接通过Socket发送出去,而不是存放在本地,这样一来,不仅降低了目标服务器的磁盘占用,还能够有效的防止文件IO异常,而Kafka就是一个比较好的解决方案,具体的架构如下图所示:
由上图可以看到,日志最终流向了两个地方:HBase Persistence和Realtime Processor,而至于为什么不用Kafka直接与Storm进行通信的原因是为了将Sotrm逻辑和日志源通过Flume进行隔离,在Storm中对日志进行简单的分析后,将结果扔进 Rabbit MQ 中供 WEB APP消费。
HBase Persistence就是将原始的日志记录在HBase中以便回档查询,而Realtime Processor则包含了实时的日志统计以及错误异常邮件提醒等功能。
为了能够准确的捕获到异常数据,我们还需要对程序进行一些规范化的改造,例如提供统一的异常处理句柄等等。
日志输出格式
既然打算要对日志进行统一处理,一个统一、规范的日志格式就是非常重要的,而我们以往使用的 PatternLayout 对于最终字段的切分非常的不方便,如下所示:
2016-05-08 19:32:55,572 [INFO ] [main] - [com.banksteel.log.demo.log4j.Demo.main(Demo.java:13)] 输出信息……
2016-05-08 19:32:55,766 [DEBUG] [main] - [com.banksteel.log.demo.log4j.Demo.main(Demo.java:15)] 调试信息……
2016-05-08 19:32:55,775 [WARN ] [main] - [com.banksteel.log.demo.log4j.Demo.main(Demo.java:16)] 警告信息……
2016-05-08 19:32:55,783 [ERROR] [main] - [com.banksteel.log.demo.log4j.Demo.main(Demo.java:20)] 处理业务逻辑的时候发生一个错误……
java.lang.Exception: 错误消息啊
at com.banksteel.log.demo.log4j.Demo.main(Demo.java:18)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at com.intellij.rt.execution.application.AppMain.main(AppMain.java:144)
如何去解析这个日志,是个非常头疼的地方,万一某个系统的开发人员输出的日志不符合既定规范的 PatternLayout 就会引发异常。
为了能够一劳永逸的解决格式问题,我们采用 JsonLayout 就能很好的规范日志输出,例如LOG4J 2.X 版本中提供的 JsonLayout 输出的格式如下所示:
{ "timeMillis" : 1462712870612, "thread" : "main", "level" : "FATAL", "loggerName" : "com.banksteel.log.demo.log4j2.Demo", "message" : "发生了一个可能会影响程序继续运行下去的异常!", "thrown" : { "commonElementCount" : 0, "localizedMessage" : "错误消息啊", "message" : "错误消息啊", "name" : "java.lang.Exception", "extendedStackTrace" : [ { "class" : "com.banksteel.log.demo.log4j2.Demo", "method" : "main", "file" : "Demo.java", "line" : 20, "exact" : true, "location" : "classes/", "version" : "?" }, { "class" : "sun.reflect.NativeMethodAccessorImpl", "method" : "invoke0", "file" : "NativeMethodAccessorImpl.java", "line" : -2, "exact" : false, "location" : "?", "version" : "1.7.0_80" }, { "class" : "sun.reflect.NativeMethodAccessorImpl", "method" : "invoke", "file" : "NativeMethodAccessorImpl.java", "line" : 57, "exact" : false, "location" : "?", "version" : "1.7.0_80" }, { "class" : "sun.reflect.DelegatingMethodAccessorImpl", "method" : "invoke", "file" : "DelegatingMethodAccessorImpl.java", "line" : 43, "exact" : false, "location" : "?", "version" : "1.7.0_80" }, { "class" : "java.lang.reflect.Method", "method" : "invoke", "file" : "Method.java", "line" : 606, "exact" : false, "location" : "?", "version" : "1.7.0_80" }, { "class" : "com.intellij.rt.execution.application.AppMain", "method" : "main", "file" : "AppMain.java", "line" : 144, "exact" : true, "location" : "idea_rt.jar", "version" : "?" } ] }, "endOfBatch" : false, "loggerFqcn" : "org.apache.logging.log4j.spi.AbstractLogger", "source" : { "class" : "com.banksteel.log.demo.log4j2.Demo", "method" : "main", "file" : "Demo.java", "line" : 23 } }
我们看到,这种格式,无论用什么语言都能轻松解析了。
日志框架的Kafka集成
我们这里只用log4j 1.x 和 log4j 2.x 进行示例。
log4j 1.x 与 Kafka 集成
首先POM.xml的内容如下:
<dependencies> <dependency> <groupId>log4j</groupId> <artifactId>log4j</artifactId> <version>1.2.17</version> </dependency> <dependency> <groupId>com.fasterxml.jackson.core</groupId> <artifactId>jackson-core</artifactId> <version>2.7.4</version> </dependency> <dependency> <groupId>com.fasterxml.jackson.core</groupId> <artifactId>jackson-databind</artifactId> <version>2.7.4</version> </dependency> <dependency> <groupId>com.fasterxml.jackson.core</groupId> <artifactId>jackson-annotations</artifactId> <version>2.7.4</version> </dependency> <dependency> <groupId>org.apache.kafka</groupId> <artifactId>kafka-clients</artifactId> <version>0.8.2.1</version> </dependency> <dependency> <groupId>org.apache.kafka</groupId> <artifactId>kafka_2.11</artifactId> <version>0.8.2.1</version> </dependency> </dependencies>
注意,我们这里使用的Kafka版本号是0.8.2.1,但是对应0.9.0.1是可以使用的并且0.9.0.1也只能用0.8.2.1才不会发生异常(具体异常可以自己尝试一下)。
而log4j 1.x 本身是没有 JsonLayout 可用的,因此我们需要自己实现一个类,如下所示:
package com.banksteel.log.demo.log4j; import com.fasterxml.jackson.core.JsonProcessingException; import com.fasterxml.jackson.databind.ObjectMapper; import org.apache.log4j.Layout; import org.apache.log4j.spi.LoggingEvent; import java.util.LinkedHashMap; import java.util.LinkedList; import java.util.List; import java.util.Map; /** * 扩展Log4j 1.x,使其支持 JsonLayout,与 log4j2.x 一样是基于Jackson进行解析,其格式也是完全参考 Log4J 2.x实现的。 * * @author 热血BUG男 * @version 1.0.0 * @since Created by gebug on 2016/5/8. */ public class JsonLayout extends Layout { private final ObjectMapper mapper = new ObjectMapper(); public String format(LoggingEvent loggingEvent) { String json; Map<String, Object> map = new LinkedHashMap<String, Object>(0); Map<String, Object> source = new LinkedHashMap<String, Object>(0); source.put("method", loggingEvent.getLocationInformation().getMethodName()); source.put("class", loggingEvent.getLocationInformation().getClassName()); source.put("file", loggingEvent.getLocationInformation().getFileName()); source.put("line", safeParse(loggingEvent.getLocationInformation().getLineNumber())); map.put("timeMillis", loggingEvent.getTimeStamp()); map.put("thread", loggingEvent.getThreadName()); map.put("level", loggingEvent.getLevel().toString()); map.put("loggerName", loggingEvent.getLocationInformation().getClassName()); map.put("source", source); map.put("endOfBatch", false); map.put("loggerFqcn", loggingEvent.getFQNOfLoggerClass()); map.put("message", safeToString(loggingEvent.getMessage())); map.put("thrown", formatThrowable(loggingEvent)); try { json = mapper.writeValueAsString(map); } catch (JsonProcessingException e) { return e.getMessage(); } return json; } private List<Map<String, Object>> formatThrowable(LoggingEvent le) { if (le.getThrowableInformation() == null || le.getThrowableInformation().getThrowable() == null) return null; List<Map<String, Object>> traces = new LinkedList<Map<String, Object>>(); Map<String, Object> throwableMap = new LinkedHashMap<String, Object>(0); StackTraceElement[] stackTraceElements = le.getThrowableInformation().getThrowable().getStackTrace(); for (StackTraceElement stackTraceElement : stackTraceElements) { throwableMap.put("class", stackTraceElement.getClassName()); throwableMap.put("file", stackTraceElement.getFileName()); throwableMap.put("line", stackTraceElement.getLineNumber()); throwableMap.put("method", stackTraceElement.getMethodName()); throwableMap.put("location", "?"); throwableMap.put("version", "?"); traces.add(throwableMap); } return traces; } private static String safeToString(Object obj) { if (obj == null) return null; try { return obj.toString(); } catch (Throwable t) { return "Error getting message: " + t.getMessage(); } } private static Integer safeParse(String obj) { try { return Integer.parseInt(obj.toString()); } catch (NumberFormatException t) { return null; } } public boolean ignoresThrowable() { return false; } public void activateOptions() { } }
其实并不复杂,注意其中有一些获取不到的信息,用?代替了,保留字段的目的在于与log4j 2.x 的日志格式完全一致,配置log4j.properties如下对接 Kafka:
log4j.rootLogger=INFO,console log4j.logger.com.banksteel.log.demo.log4j=DEBUG,kafka log4j.appender.kafka=kafka.producer.KafkaLog4jAppender log4j.appender.kafka.topic=server_log log4j.appender.kafka.brokerList=Kafka-01:9092,Kafka-02:9092,Kafka-03:9092 log4j.appender.kafka.compressionType=none log4j.appender.kafka.syncSend=true log4j.appender.kafka.layout=com.banksteel.log.demo.log4j.JsonLayout
# appender console log4j.appender.console=org.apache.log4j.ConsoleAppender log4j.appender.console.target=System.out log4j.appender.console.layout=org.apache.log4j.PatternLayout log4j.appender.console.layout.ConversionPattern=%d [%-5p] [%t] - [%l] %m%n
通过打印日志我们可以看到其输出的最终格式如下:
{ "timeMillis": 1462713132695, "thread": "main", "level": "ERROR", "loggerName": "com.banksteel.log.demo.log4j.Demo", "source": { "method": "main", "class": "com.banksteel.log.demo.log4j.Demo", "file": "Demo.java", "line": 20 }, "endOfBatch": false, "loggerFqcn": "org.slf4j.impl.Log4jLoggerAdapter", "message": "处理业务逻辑的时候发生一个错误……", "thrown": [ { "class": "com.intellij.rt.execution.application.AppMain", "file": "AppMain.java", "line": 144, "method": "main", "location": "?", "version": "?" }, { "class": "com.intellij.rt.execution.application.AppMain", "file": "AppMain.java", "line": 144, "method": "main", "location": "?", "version": "?" }, { "class": "com.intellij.rt.execution.application.AppMain", "file": "AppMain.java", "line": 144, "method": "main", "location": "?", "version": "?" }, { "class": "com.intellij.rt.execution.application.AppMain", "file": "AppMain.java", "line": 144, "method": "main", "location": "?", "version": "?" }, { "class": "com.intellij.rt.execution.application.AppMain", "file": "AppMain.java", "line": 144, "method": "main", "location": "?", "version": "?" }, { "class": "com.intellij.rt.execution.application.AppMain", "file": "AppMain.java", "line": 144, "method": "main", "location": "?", "version": "?" } ] }
测试类:
package com.banksteel.log.demo.log4j; import org.slf4j.Logger; import org.slf4j.LoggerFactory; /** * @author 热血BUG男 * @version 1.0.0 * @since Created by gebug on 2016/5/8. */ public class Demo { private static final Logger logger = LoggerFactory.getLogger(Demo.class); public static void main(String[] args) { logger.info("输出信息……"); logger.trace("随意打印……"); logger.debug("调试信息……"); logger.warn("警告信息……"); try { throw new Exception("错误消息啊"); } catch (Exception e) { logger.error("处理业务逻辑的时候发生一个错误……", e); } } }
log4j 2.x 与 Kafka 集成
log4j 2.x 天生支持 JsonLayout,并且与 Kafka 集成方便,我们只需要按部就班的配置一下就好了,POM.xml如下:
<dependencies> <dependency> <groupId>org.apache.logging.log4j</groupId> <artifactId>log4j-api</artifactId> <version>2.5</version> </dependency> <dependency> <groupId>org.apache.logging.log4j</groupId> <artifactId>log4j-core</artifactId> <version>2.5</version> </dependency> <dependency> <groupId>com.fasterxml.jackson.core</groupId> <artifactId>jackson-core</artifactId> <version>2.7.4</version> </dependency> <dependency> <groupId>com.fasterxml.jackson.core</groupId> <artifactId>jackson-databind</artifactId> <version>2.7.4</version> </dependency> <dependency> <groupId>com.fasterxml.jackson.core</groupId> <artifactId>jackson-annotations</artifactId> <version>2.7.4</version> </dependency> <dependency> <groupId>org.apache.kafka</groupId> <artifactId>kafka_2.11</artifactId> <version>0.9.0.1</version> </dependency> </dependencies>
log4j2.xml配置文件如下所示:
<?xml version="1.0" encoding="UTF-8"?> <!-- Log4j2 的配置文件 --> <Configuration status="DEBUG" strict="true" name="LOG4J2_DEMO" packages="com.banksteel.log.demo.log4j2"> <properties> <property name="logPath">log</property> </properties> <Appenders> <!--配置控制台输出样式--> <Console name="Console" target="SYSTEM_OUT"> <PatternLayout pattern="%highlight{%d{yyyy-MM-dd HH:mm:ss} %d{UNIX_MILLIS} [%t] %-5p %C{1.}:%L - %msg%n}"/> </Console> <!-- 配置Kafka日志主动采集,Storm会将日志解析成字段存放在HBase中。 --> <Kafka name="Kafka" topic="server_log"> <!--使用JSON传输日志文件--> <JsonLayout complete="true" locationInfo="true"/> <!--Kafka集群配置,需要在本机配置Hosts文件,或者通过Nginx配置--> <Property name="bootstrap.servers">Kafka-01:9092,Kafka-02:9092,Kafka-03:9092</Property> </Kafka> </Appenders> <Loggers> <Root level="DEBUG"> <!--启用控制台输出日志--> <AppenderRef ref="Console"/> <!--启用Kafka采集日志--> <AppenderRef ref="Kafka"/> </Root> </Loggers> </Configuration>
这样就Okay了,我们可以在Kafka中看到完整的输出:
{ "timeMillis" : 1462712870591, "thread" : "main", "level" : "ERROR", "loggerName" : "com.banksteel.log.demo.log4j2.Demo", "message" : "处理业务逻辑的时候发生一个错误……", "thrown" : { "commonElementCount" : 0, "localizedMessage" : "错误消息啊", "message" : "错误消息啊", "name" : "java.lang.Exception", "extendedStackTrace" : [ { "class" : "com.banksteel.log.demo.log4j2.Demo", "method" : "main", "file" : "Demo.java", "line" : 20, "exact" : true, "location" : "classes/", "version" : "?" }, { "class" : "sun.reflect.NativeMethodAccessorImpl", "method" : "invoke0", "file" : "NativeMethodAccessorImpl.java", "line" : -2, "exact" : false, "location" : "?", "version" : "1.7.0_80" }, { "class" : "sun.reflect.NativeMethodAccessorImpl", "method" : "invoke", "file" : "NativeMethodAccessorImpl.java", "line" : 57, "exact" : false, "location" : "?", "version" : "1.7.0_80" }, { "class" : "sun.reflect.DelegatingMethodAccessorImpl", "method" : "invoke", "file" : "DelegatingMethodAccessorImpl.java", "line" : 43, "exact" : false, "location" : "?", "version" : "1.7.0_80" }, { "class" : "java.lang.reflect.Method", "method" : "invoke", "file" : "Method.java", "line" : 606, "exact" : false, "location" : "?", "version" : "1.7.0_80" }, { "class" : "com.intellij.rt.execution.application.AppMain", "method" : "main", "file" : "AppMain.java", "line" : 144, "exact" : true, "location" : "idea_rt.jar", "version" : "?" } ] }, "endOfBatch" : false, "loggerFqcn" : "org.apache.logging.log4j.spi.AbstractLogger", "source" : { "class" : "com.banksteel.log.demo.log4j2.Demo", "method" : "main", "file" : "Demo.java", "line" : 22 } }
为了减少日志对空间的占用,我们通常还会设置JSONLayout的compact属性为true,这样在kafka中获得的日志将会排除掉空格和换行符。
最后
由于在实际开发中,我们会引入多个第三方依赖,这些依赖往往也会依赖无数的log日志框架,为了保证测试通过,请认清本文例子中的包名以及版本号,log4j 1.x 的 Json 输出是为了完全模拟 2.x 的字段,因此部分字段用?代替,如果想要完美,请自行解决。
随便解释一下日志级别,以便建立规范:
log.error 错误信息,通常写在 catch 中,可以使用 log.error("发生了一个错误",e) 来记录详细的异常堆栈
log.fatal 严重错误,该级别的错误用来记录会导致程序异常退出的错误日志。
log.warn 警告
log.info 信息
log.trace 简单输出文字
log.debug 调试信息