Matlab提供的两种聚类分析方法
一种是利用 clusterdata函数对样本数据进行一次聚类,其缺点为可供用户选择的面较窄,不能更改距离的计算方法;
另一种是分步聚类:
(1)找到数据集合中变量两两之间的相似性和非相似性,用pdist函数计算变量之间的距离;(2)用 linkage函数定义变量之间的连接;
(3)用 cophenetic函数评价聚类信息;
(4)用cluster函数创建聚类。
1.Matlab中相关函数介绍
1.1 pdist函数
调用格式:Y=pdist(X,’metric’)
说明:用 ‘metric’指定的方法计算 X 数据矩阵中对象之间的距离。
X:一个m×n的矩阵,它是由m个对象组成的数据集,每个对象的大小为n。
metric’取值如下:
‘euclidean’:欧氏距离(默认);
‘seuclidean’:标准化欧氏距离;
‘mahalanobis’:马氏距离;
‘cityblock’:布洛克距离;
‘minkowski’:明可夫斯基距离;
‘cosine’:
‘correlation’:
‘hamming’:
‘jaccard’:
‘chebychev’:Chebychev距离。
1.2 squareform函数
调用格式:Z=squareform(Y,..)
说明: 强制将距离矩阵从上三角形式转化为方阵形式,或从方阵形式转化为上三角形式。
1.3 linkage函数
调用格式:Z=linkage(Y,’method’)
说 明:用‘method’参数指定的算法计算系统聚类树。
Y:pdist函数返回的距离向量;
method:可取值如下:
‘single’:最短距离法(默认);
‘complete’:最长距离法;
‘average’:未加权平均距离法;
‘weighted’: 加权平均法;
‘centroid’: 质心距离法;
‘median’:加权质心距离法;
‘ward’:内平方距离法(最小方差算法)
返回:Z为一个包含聚类树信息的(m-1)×3的矩阵。
1.4 dendrogram函数
调用格式:[H,T,…]=dendrogram(Z,p,…)
说明:生成只有顶部p个节点的冰柱图(谱系图)。
1.5 cophenet函数
调用格式:c=cophenetic(Z,Y)
说明:利用pdist函数生成的Y和linkage函数生成的Z计算cophenet相关系数。
1.6 cluster 函数
调用格式:T=cluster(Z,…)
说明:根据linkage函数的输出Z 创建分类。
1.7 clusterdata函数
调用格式:T=clusterdata(X,…)
说明:根据数据创建分类。
T=clusterdata(X,cutoff)与下面的一组命令等价:
Y=pdist(X,’euclid’);
Z=linkage(Y,’single’);
T=cluster(Z,cutoff);
2. Matlab程序
2.1 一次聚类法
X=[11978 12.5 93.5 31908;…;57500 67.6 238.0 15900];
T=clusterdata(X,0.9)
2.2 分步聚类
Step1 寻找变量之间的相似性
用pdist函数计算相似矩阵,有多种方法可以计算距离,进行计算之前最好先将数据用zscore函数进行标准化。
X2=zscore(X); %标准化数据
Y2=pdist(X2); %计算距离
Step2 定义变量之间的连接
Z2=linkage(Y2);
Step3 评价聚类信息
C2=cophenet(Z2,Y2); //0.94698
Step4 创建聚类,并作出谱系图
T=cluster(Z2,6);
H=dendrogram(Z2);