Cosine Similarity

Cosine similarity is a measure of similarity between two vectors of an inner product space that measures the cosine of the angle between them. The cosine of 0° is 1, and it is less than 1 for any other angle.

See wiki: Cosine Similarity

Here is the formula:

/media/problem/cosine-similarity.png

Given two vectors A and B with the same size, calculate the cosine similarity.

Return 2.0000 if cosine similarity is invalid (for example A = [0] and B = [0]).

Example

Given A = [1, 2, 3], B = [2, 3 ,4].

Return 0.9926.

Given A = [0], B = [0].

Return 2.0000

分析:

按照公式算就可以了。需要考虑invalid case.

 1 class Solution {
 2     /**
 3      * @param A: An integer array.
 4      * @param B: An integer array.
 5      * @return: Cosine similarity.
 6      */
 7     public double cosineSimilarity(int[] A, int[] B) {
 8         
 9         if (A == null || B == null || A.length == 0 || B.length == 0 || A.length != B.length) return 2.0;
10         double nA = norm(A);
11         double nB = norm(B);
12         double  m = 0;
13         if (nA == 0 || nB == 0) return 2.0;
14         for (int i = 0; i < A.length; ++i) {
15             m += A[i] * B[i];
16         }
17         return m / (nA * nB);
18     }
19     double norm(int[] V) {
20         int res = 0;
21         for (int i = 0; i < V.length; ++i) {
22             res += V[i] * V[i];
23         }
24         return Math.sqrt(res);
25     }
26 }

 

 

posted @ 2016-07-01 03:11  北叶青藤  阅读(488)  评论(0编辑  收藏  举报