Unique Paths

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?

Above is a 3 x 7 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

思路:本题意思是通过向下走或者向右走到达Finish,我们可以抽象一下,到达(i,j)点必通过(i-1,j)或者(i,j-1).所以使用result[i][j]表示到达(i,j)有多少中方法,故result[i][j]=result[i-1][j]+result[i][j-1];

class Solution {
public:
    int uniquePaths(int m, int n) {
        int result[m][n];
        for(int i=0;i<m;i++)
            result[i][0]=1;
        for(int j=0;j<n;j++)
            result[0][j]=1;
        for(int i=1;i<m;i++)
        {
            for(int j=1;j<n;j++)
            {
                result[i][j]=result[i-1][j]+result[i][j-1];
            }
        }
        return result[m-1][n-1];
    }
};

 

 

posted @ 2014-03-22 23:50  Awy  阅读(253)  评论(0编辑  收藏  举报