【原创】开源Math.NET基础数学类库使用(16)C#计算矩阵秩

               本博客所有文章分类的总目录:【总目录】本博客博文总目录-实时更新 

开源Math.NET基础数学类库使用总目录:【目录】开源Math.NET基础数学类库使用总目录

  上个月对Math.NET的基本使用进行了介绍,主要内容有矩阵,向量的相关操作,解析数据格式,数值积分,数据统计,相关函数,求解线性方程组以及随机数发生器的相关内容。这个月接着深入发掘Math.NET的各种功能,并对源代码进行分析,使得大家可以尽可能的使用Math.NET在.NET平台下轻易的开发数学计算相关的,或者可以将其中的源码快速移植到自己的系统中去(有时候并不需要所有的功能,只需要其中的部分功能代码),今天要介绍的是Math.NET中利用C#计算矩阵秩的功能。

  本文原文地址:http://www.cnblogs.com/asxinyu/p/4304304.html

1.什么是矩阵秩

  矩阵的秩是反映矩阵固有特性的一个重要概念。在线性代数中,一个矩阵A的列秩是A的线性无关的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。矩阵的列秩和行秩总是相等的,因此它们可以简单地称作矩阵A的秩。通常表示为r(A),rk(A)或rank A。矩阵的行秩与列秩相等,是线性代数基本定理的重要组成部分. 其基本证明思路是,矩阵可以看作线性映射的变换矩阵,列秩为像空间的维度,行秩为非零原像空间的维度,因此列秩与行秩相等,即像空间的维度与非零原像空间的维度相等(这里的非零原像空间是指约去了零空间后的商空间:原像空间)。这从矩阵的奇异值分解就可以看出来。矩阵秩的计算最容易的方式是高斯消去法,这里引用维基百科的内容:

  计算矩阵A的秩的最容易的方式是高斯消去法,即利用矩阵的初等变换生成一个行阶梯型矩阵,由于矩阵的初等变换不改变矩阵的秩,因此A的行梯阵形式有同A一样的秩。经过初等变换的矩阵的非零行的数目就是原矩阵的秩。例如考虑4 × 4矩阵:

我们看到第2纵列是第1纵列的两倍,而第4纵列等于第1和第3纵列的总和。第1和第3纵列是线性无关的,所以A的秩是2。这可以用高斯算法验证。它生成下列A的行梯阵形式:

  它有两个非零的横行。在应用在计算机上的浮点数的时候,基本高斯消去(LU分解)可能是不稳定的,应当使用秩启示(revealing)分解。一个有效的替代者是奇异值分解(SVD),但还有更少代价的选择,比如有支点(pivoting)的QR分解,它也比高斯消去在数值上更强壮。秩的数值判定要求对一个值比如来自SVD的一个奇异值是否为零的依据,实际选择依赖于矩阵和应用二者。

http://zh.wikipedia.org/wiki/秩_(线性代数)

  矩阵秩在线性代数中的应用还是很广的,如计算线性方程组的解的数目等,下面就看一下Math.NET中对该过程的计算实现以及如何调用的例子。

2.Math.NET矩阵秩计算的实现

  Math.NET在对矩阵秩的计算过程中,和行列式的实现方式非常相似,也是把其作为矩阵计算的一个小部分功能,作为属性添加在各个矩阵分解算法的抽象和实现类中,看一下其中一个Svd分解算法抽象,由于计算简单,已经直接实现了秩的计算,继承类可以直接使用,就够了,其他的使用下面也和行列式类似。

 1 internal abstract class Svd : Svd<float>
 2 {
 3     protected Svd(Vector<float> s, Matrix<float> u, Matrix<float> vt, bool vectorsComputed)
 4         : base(s, u, vt, vectorsComputed) { }
 5 
 6     /// <summary>计算矩阵秩</summary>
 7     /// <value>The number of non-negligible singular values.</value>
 8     public override int Rank
 9     {
10         get
11         {
12             return S.Count(t => !Math.Abs(t).AlmostEqual(0.0f));
13         }
14     }
15     public override double L2Norm
16     {
17         get{return Math.Abs(S[0]);}
18     }
19 
20     public override float ConditionNumber
21     {
22         get
23         {
24             var tmp = Math.Min(U.RowCount, VT.ColumnCount) - 1;
25             return Math.Abs(S[0]) / Math.Abs(S[tmp]);
26         }
27     }
28     /// <summary>计算行列式 </summary>
29     public override float Determinant
30     {
31         get
32         {
33             if (U.RowCount != VT.ColumnCount)
34             {
35                 throw new ArgumentException(Resources.ArgumentMatrixSquare);
36             }
37 
38             var det = 1.0;
39             foreach (var value in S)
40             {
41                 det *= value;
42                 if (Math.Abs(value).AlmostEqual(0.0f))
43                 {
44                     return 0;
45                 }
46             }
47             return Convert.ToSingle(Math.Abs(det));
48         }
49     }
50 }

3.Math.NET计算矩阵秩的代码

  上述过程和原理只是便于大家理解其实现过程,下面简单演示一下在Math.NET中计算矩阵秩的过程,就是直接调用计算即可。

 1 // 格式设置
 2 var formatProvider = (CultureInfo)CultureInfo.InvariantCulture.Clone();
 3 formatProvider.TextInfo.ListSeparator = " ";
 4 
 5 //创建一个随机的矩阵
 6 var matrix = new DenseMatrix(5);
 7 var rnd = new Random(1); 
 8 for (var i = 0; i < matrix.RowCount; i++)
 9 {
10     for (var j = 0; j < matrix.ColumnCount; j++)
11     {
12         matrix[i, j] = rnd.NextDouble();
13     }
14 }
15 
16 Console.WriteLine(@"Initial matrix");
17 Console.WriteLine(matrix.ToString("#0.00\t", formatProvider));
18 Console.WriteLine();
19 //1. 秩
20 Console.WriteLine(@"矩阵秩计算结果为:");
21 Console.WriteLine(matrix.Rank());
22 Console.WriteLine();

结果如下:

 1 Initial matrix
 2 DenseMatrix 5x5-Double
 3 0.25      0.11    0.47    0.77    0.66
 4 0.43      0.35    0.94    0.10    0.64
 5 0.03      0.25    0.32    0.99    0.68
 6 0.65      0.28    0.62    0.70    0.70
 7 0.95      0.09    0.16    0.38    0.80
 8 
 9 
10 矩阵秩计算结果为:
11 5

4.资源

  包括源代码以及案例都可以去官网下载,下载地址本系列文章的目录中第一篇文章:http://www.cnblogs.com/asxinyu/p/4264638.html,有介绍。由于源码很大,如果找不到相应的案例,可以进行搜索,可以比较快的找到相应的代码。

posted @ 2015-05-04 06:12  数据之巅  阅读(7633)  评论(5编辑  收藏  举报