【原创】开源Math.NET基础数学类库使用(09)相关数论函数使用

               本博客所有文章分类的总目录:【总目录】本博客博文总目录-实时更新 

开源Math.NET基础数学类库使用总目录:【目录】开源Math.NET基础数学类库使用总目录

前言

  数论就是指研究整数性质的一门理论。数论=算术。不过通常算术指数的计算,数论指数的理论。整数的基本元素是素数,所以数论的本质是对素数性质的研究。它是与平面几何同样历史悠久的学科。它大致包括代数数论、解析数论、计算数论等等。

  Math.NET也包括了很多数论相关的函数,这些函数都是静态的,可以直接调用,如判断是否奇数,判断幂,平方数,最大公约数等等。同时部分函数已经作为扩展方法,可以直接在对象中使用。

  如果本文资源或者显示有问题,请参考 本文原文地址http://www.cnblogs.com/asxinyu/p/4301097.html 

1.数论函数类Euclid

  Math.NET包括的数论函数除了一部分大家日常接触到的,奇数,偶数,幂,平方数,最大公约数,最小公倍数等函数,还有一些欧几里得几何的函数,当然也是比较简单的,这些问题的算法有一些比较简单,如最大公约数,最小公倍数等,都有成熟的算法可以使用,对于使用Math.NET的人来说,不必要了解太小,当然对于需要搞清楚原理的人来说,学习Math.NET的架构或者实现,是可以参考的。所以这里先给出Math.NET关于数论函数类Euclid的源代码:

  1 /// <summary>
  2 /// 整数数论函数
  3 /// Integer number theory functions.
  4 /// </summary>
  5 public static class Euclid
  6 {
  7     /// <summary>
  8     /// Canonical Modulus. The result has the sign of the divisor.
  9     /// </summary>
 10     public static double Modulus(double dividend, double divisor)
 11     {
 12         return ((dividend%divisor) + divisor)%divisor;
 13     }
 14 
 15     /// <summary>
 16     /// Canonical Modulus. The result has the sign of the divisor.
 17     /// </summary>
 18     public static float Modulus(float dividend, float divisor)
 19     {
 20         return ((dividend%divisor) + divisor)%divisor;
 21     }
 22 
 23     /// <summary>
 24     /// Canonical Modulus. The result has the sign of the divisor.
 25     /// </summary>
 26     public static int Modulus(int dividend, int divisor)
 27     {
 28         return ((dividend%divisor) + divisor)%divisor;
 29     }
 30 
 31     /// <summary>
 32     /// Canonical Modulus. The result has the sign of the divisor.
 33     /// </summary>
 34     public static long Modulus(long dividend, long divisor)
 35     {
 36         return ((dividend%divisor) + divisor)%divisor;
 37     }
 38 
 39 #if !NOSYSNUMERICS
 40     /// <summary>
 41     /// Canonical Modulus. The result has the sign of the divisor.
 42     /// </summary>
 43     public static BigInteger Modulus(BigInteger dividend, BigInteger divisor)
 44     {
 45         return ((dividend%divisor) + divisor)%divisor;
 46     }
 47 #endif
 48 
 49     /// <summary>
 50     /// Remainder (% operator). The result has the sign of the dividend.
 51     /// </summary>
 52     public static double Remainder(double dividend, double divisor)
 53     {
 54         return dividend%divisor;
 55     }
 56 
 57     /// <summary>
 58     /// Remainder (% operator). The result has the sign of the dividend.
 59     /// </summary>
 60     public static float Remainder(float dividend, float divisor)
 61     {
 62         return dividend%divisor;
 63     }
 64 
 65     /// <summary>
 66     /// Remainder (% operator). The result has the sign of the dividend.
 67     /// </summary>
 68     public static int Remainder(int dividend, int divisor)
 69     {
 70         return dividend%divisor;
 71     }
 72 
 73     /// <summary>
 74     /// Remainder (% operator). The result has the sign of the dividend.
 75     /// </summary>
 76     public static long Remainder(long dividend, long divisor)
 77     {
 78         return dividend%divisor;
 79     }
 80 
 81 #if !NOSYSNUMERICS
 82     /// <summary>
 83     /// Remainder (% operator). The result has the sign of the dividend.
 84     /// </summary>
 85     public static BigInteger Remainder(BigInteger dividend, BigInteger divisor)
 86     {
 87         return dividend%divisor;
 88     }
 89 #endif
 90 
 91     /// <summary>
 92     /// Find out whether the provided 32 bit integer is an even number.
 93     /// </summary>
 94     /// <param name="number">The number to very whether it's even.</param>
 95     /// <returns>True if and only if it is an even number.</returns>
 96     public static bool IsEven(this int number)
 97     {
 98         return (number & 0x1) == 0x0;
 99     }
100 
101     /// <summary>
102     /// Find out whether the provided 64 bit integer is an even number.
103     /// </summary>
104     /// <param name="number">The number to very whether it's even.</param>
105     /// <returns>True if and only if it is an even number.</returns>
106     public static bool IsEven(this long number)
107     {
108         return (number & 0x1) == 0x0;
109     }
110 
111     /// <summary>
112     /// Find out whether the provided 32 bit integer is an odd number.
113     /// </summary>
114     /// <param name="number">The number to very whether it's odd.</param>
115     /// <returns>True if and only if it is an odd number.</returns>
116     public static bool IsOdd(this int number)
117     {
118         return (number & 0x1) == 0x1;
119     }
120 
121     /// <summary>
122     /// Find out whether the provided 64 bit integer is an odd number.
123     /// </summary>
124     /// <param name="number">The number to very whether it's odd.</param>
125     /// <returns>True if and only if it is an odd number.</returns>
126     public static bool IsOdd(this long number)
127     {
128         return (number & 0x1) == 0x1;
129     }
130 
131     /// <summary>
132     /// Find out whether the provided 32 bit integer is a perfect power of two.
133     /// </summary>
134     /// <param name="number">The number to very whether it's a power of two.</param>
135     /// <returns>True if and only if it is a power of two.</returns>
136     public static bool IsPowerOfTwo(this int number)
137     {
138         return number > 0 && (number & (number - 1)) == 0x0;
139     }
140 
141     /// <summary>
142     /// Find out whether the provided 64 bit integer is a perfect power of two.
143     /// </summary>
144     /// <param name="number">The number to very whether it's a power of two.</param>
145     /// <returns>True if and only if it is a power of two.</returns>
146     public static bool IsPowerOfTwo(this long number)
147     {
148         return number > 0 && (number & (number - 1)) == 0x0;
149     }
150 
151     /// <summary>
152     /// Find out whether the provided 32 bit integer is a perfect square, i.e. a square of an integer.
153     /// </summary>
154     /// <param name="number">The number to very whether it's a perfect square.</param>
155     /// <returns>True if and only if it is a perfect square.</returns>
156     public static bool IsPerfectSquare(this int number)
157     {
158         if (number < 0)
159         {
160             return false;
161         }
162 
163         int lastHexDigit = number & 0xF;
164         if (lastHexDigit > 9)
165         {
166             return false; // return immediately in 6 cases out of 16.
167         }
168 
169         if (lastHexDigit == 0 || lastHexDigit == 1 || lastHexDigit == 4 || lastHexDigit == 9)
170         {
171             int t = (int)Math.Floor(Math.Sqrt(number) + 0.5);
172             return (t * t) == number;
173         }
174 
175         return false;
176     }
177 
178     /// <summary>
179     /// Find out whether the provided 64 bit integer is a perfect square, i.e. a square of an integer.
180     /// </summary>
181     /// <param name="number">The number to very whether it's a perfect square.</param>
182     /// <returns>True if and only if it is a perfect square.</returns>
183     public static bool IsPerfectSquare(this long number)
184     {
185         if (number < 0)
186         {
187             return false;
188         }
189 
190         int lastHexDigit = (int)(number & 0xF);
191         if (lastHexDigit > 9)
192         {
193             return false; // return immediately in 6 cases out of 16.
194         }
195 
196         if (lastHexDigit == 0 || lastHexDigit == 1 || lastHexDigit == 4 || lastHexDigit == 9)
197         {
198             long t = (long)Math.Floor(Math.Sqrt(number) + 0.5);
199             return (t * t) == number;
200         }
201 
202         return false;
203     }
204 
205     /// <summary>
206     /// Raises 2 to the provided integer exponent (0 &lt;= exponent &lt; 31).
207     /// </summary>
208     /// <param name="exponent">The exponent to raise 2 up to.</param>
209     /// <returns>2 ^ exponent.</returns>
210     /// <exception cref="ArgumentOutOfRangeException"/>
211     public static int PowerOfTwo(this int exponent)
212     {
213         if (exponent < 0 || exponent >= 31)
214         {
215             throw new ArgumentOutOfRangeException("exponent");
216         }
217 
218         return 1 << exponent;
219     }
220 
221     /// <summary>
222     /// Raises 2 to the provided integer exponent (0 &lt;= exponent &lt; 63).
223     /// </summary>
224     /// <param name="exponent">The exponent to raise 2 up to.</param>
225     /// <returns>2 ^ exponent.</returns>
226     /// <exception cref="ArgumentOutOfRangeException"/>
227     public static long PowerOfTwo(this long exponent)
228     {
229         if (exponent < 0 || exponent >= 63)
230         {
231             throw new ArgumentOutOfRangeException("exponent");
232         }
233 
234         return ((long)1) << (int)exponent;
235     }
236 
237     /// <summary>
238     /// Find the closest perfect power of two that is larger or equal to the provided
239     /// 32 bit integer.
240     /// </summary>
241     /// <param name="number">The number of which to find the closest upper power of two.</param>
242     /// <returns>A power of two.</returns>
243     /// <exception cref="ArgumentOutOfRangeException"/>
244     public static int CeilingToPowerOfTwo(this int number)
245     {
246         if (number == Int32.MinValue)
247         {
248             return 0;
249         }
250 
251         const int maxPowerOfTwo = 0x40000000;
252         if (number > maxPowerOfTwo)
253         {
254             throw new ArgumentOutOfRangeException("number");
255         }
256 
257         number--;
258         number |= number >> 1;
259         number |= number >> 2;
260         number |= number >> 4;
261         number |= number >> 8;
262         number |= number >> 16;
263         return number + 1;
264     }
265 
266     /// <summary>
267     /// Find the closest perfect power of two that is larger or equal to the provided
268     /// 64 bit integer.
269     /// </summary>
270     /// <param name="number">The number of which to find the closest upper power of two.</param>
271     /// <returns>A power of two.</returns>
272     /// <exception cref="ArgumentOutOfRangeException"/>
273     public static long CeilingToPowerOfTwo(this long number)
274     {
275         if (number == Int64.MinValue)
276         {
277             return 0;
278         }
279 
280         const long maxPowerOfTwo = 0x4000000000000000;
281         if (number > maxPowerOfTwo)
282         {
283             throw new ArgumentOutOfRangeException("number");
284         }
285 
286         number--;
287         number |= number >> 1;
288         number |= number >> 2;
289         number |= number >> 4;
290         number |= number >> 8;
291         number |= number >> 16;
292         number |= number >> 32;
293         return number + 1;
294     }
295 
296     /// <summary>
297     /// Returns the greatest common divisor (<c>gcd</c>) of two integers using Euclid's algorithm.
298     /// </summary>
299     /// <param name="a">First Integer: a.</param>
300     /// <param name="b">Second Integer: b.</param>
301     /// <returns>Greatest common divisor <c>gcd</c>(a,b)</returns>
302     public static long GreatestCommonDivisor(long a, long b)
303     {
304         while (b != 0)
305         {
306             var remainder = a%b;
307             a = b;
308             b = remainder;
309         }
310 
311         return Math.Abs(a);
312     }
313 
314     /// <summary>
315     /// Returns the greatest common divisor (<c>gcd</c>) of a set of integers using Euclid's
316     /// algorithm.
317     /// </summary>
318     /// <param name="integers">List of Integers.</param>
319     /// <returns>Greatest common divisor <c>gcd</c>(list of integers)</returns>
320     public static long GreatestCommonDivisor(IList<long> integers)
321     {
322         if (null == integers)
323         {
324             throw new ArgumentNullException("integers");
325         }
326 
327         if (integers.Count == 0)
328         {
329             return 0;
330         }
331 
332         var gcd = Math.Abs(integers[0]);
333 
334         for (var i = 1; (i < integers.Count) && (gcd > 1); i++)
335         {
336             gcd = GreatestCommonDivisor(gcd, integers[i]);
337         }
338 
339         return gcd;
340     }
341 
342     /// <summary>
343     /// Returns the greatest common divisor (<c>gcd</c>) of a set of integers using Euclid's algorithm.
344     /// </summary>
345     /// <param name="integers">List of Integers.</param>
346     /// <returns>Greatest common divisor <c>gcd</c>(list of integers)</returns>
347     public static long GreatestCommonDivisor(params long[] integers)
348     {
349         return GreatestCommonDivisor((IList<long>)integers);
350     }
351 
352     /// <summary>
353     /// Computes the extended greatest common divisor, such that a*x + b*y = <c>gcd</c>(a,b).
354     /// </summary>
355     /// <param name="a">First Integer: a.</param>
356     /// <param name="b">Second Integer: b.</param>
357     /// <param name="x">Resulting x, such that a*x + b*y = <c>gcd</c>(a,b).</param>
358     /// <param name="y">Resulting y, such that a*x + b*y = <c>gcd</c>(a,b)</param>
359     /// <returns>Greatest common divisor <c>gcd</c>(a,b)</returns>
360     /// <example>
361     /// <code>
362     /// long x,y,d;
363     /// d = Fn.GreatestCommonDivisor(45,18,out x, out y);
364     /// -> d == 9 &amp;&amp; x == 1 &amp;&amp; y == -2
365     /// </code>
366     /// The <c>gcd</c> of 45 and 18 is 9: 18 = 2*9, 45 = 5*9. 9 = 1*45 -2*18, therefore x=1 and y=-2.
367     /// </example>
368     public static long ExtendedGreatestCommonDivisor(long a, long b, out long x, out long y)
369     {
370         long mp = 1, np = 0, m = 0, n = 1;
371 
372         while (b != 0)
373         {
374             long rem;
375 #if PORTABLE
376             rem = a % b;
377             var quot = a / b;
378 #else
379             long quot = Math.DivRem(a, b, out rem);
380 #endif
381             a = b;
382             b = rem;
383 
384             var tmp = m;
385             m = mp - (quot*m);
386             mp = tmp;
387 
388             tmp = n;
389             n = np - (quot*n);
390             np = tmp;
391         }
392 
393         if (a >= 0)
394         {
395             x = mp;
396             y = np;
397             return a;
398         }
399 
400         x = -mp;
401         y = -np;
402         return -a;
403     }
404 
405     /// <summary>
406     /// Returns the least common multiple (<c>lcm</c>) of two integers using Euclid's algorithm.
407     /// </summary>
408     /// <param name="a">First Integer: a.</param>
409     /// <param name="b">Second Integer: b.</param>
410     /// <returns>Least common multiple <c>lcm</c>(a,b)</returns>
411     public static long LeastCommonMultiple(long a, long b)
412     {
413         if ((a == 0) || (b == 0))
414         {
415             return 0;
416         }
417 
418         return Math.Abs((a/GreatestCommonDivisor(a, b))*b);
419     }
420 
421     /// <summary>
422     /// Returns the least common multiple (<c>lcm</c>) of a set of integers using Euclid's algorithm.
423     /// </summary>
424     /// <param name="integers">List of Integers.</param>
425     /// <returns>Least common multiple <c>lcm</c>(list of integers)</returns>
426     public static long LeastCommonMultiple(IList<long> integers)
427     {
428         if (null == integers)
429         {
430             throw new ArgumentNullException("integers");
431         }
432 
433         if (integers.Count == 0)
434         {
435             return 1;
436         }
437 
438         var lcm = Math.Abs(integers[0]);
439 
440         for (var i = 1; i < integers.Count; i++)
441         {
442             lcm = LeastCommonMultiple(lcm, integers[i]);
443         }
444 
445         return lcm;
446     }
447 
448     /// <summary>
449     /// Returns the least common multiple (<c>lcm</c>) of a set of integers using Euclid's algorithm.
450     /// </summary>
451     /// <param name="integers">List of Integers.</param>
452     /// <returns>Least common multiple <c>lcm</c>(list of integers)</returns>
453     public static long LeastCommonMultiple(params long[] integers)
454     {
455         return LeastCommonMultiple((IList<long>)integers);
456     }
457 
458 #if !NOSYSNUMERICS
459     /// <summary>
460     /// Returns the greatest common divisor (<c>gcd</c>) of two big integers.
461     /// </summary>
462     /// <param name="a">First Integer: a.</param>
463     /// <param name="b">Second Integer: b.</param>
464     /// <returns>Greatest common divisor <c>gcd</c>(a,b)</returns>
465     public static BigInteger GreatestCommonDivisor(BigInteger a, BigInteger b)
466     {
467         return BigInteger.GreatestCommonDivisor(a, b);
468     }
469 
470     /// <summary>
471     /// Returns the greatest common divisor (<c>gcd</c>) of a set of big integers.
472     /// </summary>
473     /// <param name="integers">List of Integers.</param>
474     /// <returns>Greatest common divisor <c>gcd</c>(list of integers)</returns>
475     public static BigInteger GreatestCommonDivisor(IList<BigInteger> integers)
476     {
477         if (null == integers)
478         {
479             throw new ArgumentNullException("integers");
480         }
481 
482         if (integers.Count == 0)
483         {
484             return 0;
485         }
486 
487         var gcd = BigInteger.Abs(integers[0]);
488 
489         for (int i = 1; (i < integers.Count) && (gcd > BigInteger.One); i++)
490         {
491             gcd = GreatestCommonDivisor(gcd, integers[i]);
492         }
493 
494         return gcd;
495     }
496 
497     /// <summary>
498     /// Returns the greatest common divisor (<c>gcd</c>) of a set of big integers.
499     /// </summary>
500     /// <param name="integers">List of Integers.</param>
501     /// <returns>Greatest common divisor <c>gcd</c>(list of integers)</returns>
502     public static BigInteger GreatestCommonDivisor(params BigInteger[] integers)
503     {
504         return GreatestCommonDivisor((IList<BigInteger>)integers);
505     }
506 
507     /// <summary>
508     /// Computes the extended greatest common divisor, such that a*x + b*y = <c>gcd</c>(a,b).
509     /// </summary>
510     /// <param name="a">First Integer: a.</param>
511     /// <param name="b">Second Integer: b.</param>
512     /// <param name="x">Resulting x, such that a*x + b*y = <c>gcd</c>(a,b).</param>
513     /// <param name="y">Resulting y, such that a*x + b*y = <c>gcd</c>(a,b)</param>
514     /// <returns>Greatest common divisor <c>gcd</c>(a,b)</returns>
515     /// <example>
516     /// <code>
517     /// long x,y,d;
518     /// d = Fn.GreatestCommonDivisor(45,18,out x, out y);
519     /// -> d == 9 &amp;&amp; x == 1 &amp;&amp; y == -2
520     /// </code>
521     /// The <c>gcd</c> of 45 and 18 is 9: 18 = 2*9, 45 = 5*9. 9 = 1*45 -2*18, therefore x=1 and y=-2.
522     /// </example>
523     public static BigInteger ExtendedGreatestCommonDivisor(BigInteger a, BigInteger b, out BigInteger x, out BigInteger y)
524     {
525         BigInteger mp = BigInteger.One, np = BigInteger.Zero, m = BigInteger.Zero, n = BigInteger.One;
526 
527         while (!b.IsZero)
528         {
529             BigInteger rem;
530             BigInteger quot = BigInteger.DivRem(a, b, out rem);
531             a = b;
532             b = rem;
533 
534             BigInteger tmp = m;
535             m = mp - (quot*m);
536             mp = tmp;
537 
538             tmp = n;
539             n = np - (quot*n);
540             np = tmp;
541         }
542 
543         if (a >= BigInteger.Zero)
544         {
545             x = mp;
546             y = np;
547             return a;
548         }
549 
550         x = -mp;
551         y = -np;
552         return -a;
553     }
554 
555     /// <summary>
556     /// Returns the least common multiple (<c>lcm</c>) of two big integers.
557     /// </summary>
558     /// <param name="a">First Integer: a.</param>
559     /// <param name="b">Second Integer: b.</param>
560     /// <returns>Least common multiple <c>lcm</c>(a,b)</returns>
561     public static BigInteger LeastCommonMultiple(BigInteger a, BigInteger b)
562     {
563         if (a.IsZero || b.IsZero)
564         {
565             return BigInteger.Zero;
566         }
567 
568         return BigInteger.Abs((a/BigInteger.GreatestCommonDivisor(a, b))*b);
569     }
570 
571     /// <summary>
572     /// Returns the least common multiple (<c>lcm</c>) of a set of big integers.
573     /// </summary>
574     /// <param name="integers">List of Integers.</param>
575     /// <returns>Least common multiple <c>lcm</c>(list of integers)</returns>
576     public static BigInteger LeastCommonMultiple(IList<BigInteger> integers)
577     {
578         if (null == integers)
579         {
580             throw new ArgumentNullException("integers");
581         }
582 
583         if (integers.Count == 0)
584         {
585             return 1;
586         }
587 
588         var lcm = BigInteger.Abs(integers[0]);
589 
590         for (int i = 1; i < integers.Count; i++)
591         {
592             lcm = LeastCommonMultiple(lcm, integers[i]);
593         }
594 
595         return lcm;
596     }
597 
598     /// <summary>
599     /// Returns the least common multiple (<c>lcm</c>) of a set of big integers.
600     /// </summary>
601     /// <param name="integers">List of Integers.</param>
602     /// <returns>Least common multiple <c>lcm</c>(list of integers)</returns>
603     public static BigInteger LeastCommonMultiple(params BigInteger[] integers)
604     {
605         return LeastCommonMultiple((IList<BigInteger>)integers);
606     }
607 #endif
608 }

2.Euclid类的使用例子

  上面已经看到源码,也提到了,Euclid作为静态类,其中的很多静态方法都可以直接作为扩展方法使用。这里看看几个简单的例子:

 1 // 1. Find out whether the provided number is an even number
 2 Console.WriteLine(@"1.判断提供的数字是否是偶数");
 3 Console.WriteLine(@"{0} 是偶数 = {1}. {2} 是偶数 = {3}", 1, Euclid.IsEven(1), 2, 2.IsEven());
 4 Console.WriteLine();
 5 
 6 // 2. Find out whether the provided number is an odd number
 7 Console.WriteLine(@"2.判断提供的数字是否是奇数");
 8 Console.WriteLine(@"{0} 是奇数 = {1}. {2} 是奇数 = {3}", 1, 1.IsOdd(), 2, Euclid.IsOdd(2));
 9 Console.WriteLine();
10 
11 // 3. Find out whether the provided number is a perfect power of two
12 Console.WriteLine(@"2.判断提供的数字是否是2的幂");
13 Console.WriteLine(@"{0} 是2的幂 = {1}. {2} 是2的幂 = {3}", 5, 5.IsPowerOfTwo(), 16, Euclid.IsPowerOfTwo(16));
14 Console.WriteLine();
15 
16 // 4. Find the closest perfect power of two that is larger or equal to 97
17 Console.WriteLine(@"4.返回大于等于97的最小2的幂整数");
18 Console.WriteLine(97.CeilingToPowerOfTwo());
19 Console.WriteLine();
20 
21 // 5. Raise 2 to the 16
22 Console.WriteLine(@"5. 2的16次幂");
23 Console.WriteLine(16.PowerOfTwo());
24 Console.WriteLine();
25 
26 // 6. Find out whether the number is a perfect square
27 Console.WriteLine(@"6. 判断提供的数字是否是平方数");
28 Console.WriteLine(@"{0} 是平方数 = {1}. {2} 是平方数 = {3}", 37, 37.IsPerfectSquare(), 81, Euclid.IsPerfectSquare(81));
29 Console.WriteLine();
30 
31 // 7. Compute the greatest common divisor of 32 and 36 
32 Console.WriteLine(@"7. 返回32和36的最大公约数");
33 Console.WriteLine(Euclid.GreatestCommonDivisor(32, 36));
34 Console.WriteLine();
35 
36 // 8. Compute the greatest common divisor of 492, -984, 123, 246
37 Console.WriteLine(@"8. 返回的最大公约数:492、-984、123、246");
38 Console.WriteLine(Euclid.GreatestCommonDivisor(492, -984, 123, 246));
39 Console.WriteLine();
40 
41 // 9. Compute the least common multiple of 16 and 12
42 Console.WriteLine(@"10. 计算的最小公倍数:16和12");
43 Console.WriteLine(Euclid.LeastCommonMultiple(16, 12));
44 Console.WriteLine();

结果如下:

1.判断提供的数字是否是偶数
1 是偶数 = False. 2 是偶数 = True

2.判断提供的数字是否是奇数
1 是奇数 = True. 2 是奇数 = False

2.判断提供的数字是否是2的幂
5 是2的幂 = False. 16 是2的幂 = True

4.返回大于等于97的最小2的幂整数
128

5. 2的16次幂
65536

6. 判断提供的数字是否是平方数
37 是平方数 = False. 81 是平方数 = True

7. 返回32和36的最大公约数
4

8. 返回的最大公约数:492、-984123246
123

10. 计算的最小公倍数:16和12
48

3.资源

  源码下载:http://www.cnblogs.com/asxinyu/p/4264638.html

  如果本文资源或者显示有问题,请参考 本文原文地址http://www.cnblogs.com/asxinyu/p/4301097.html

posted @ 2015-03-06 08:00  数据之巅  阅读(5311)  评论(4编辑  收藏  举报