Ubuntu-安装-theano+caffe-超详细教程

一、说明

  • 本文是继《Ubuntu-安装-cuda7.0-单显卡-超详细教程》 之后的续篇。theano和caffe是深度学习库,对运算能力需求很大,最好使用cuda进行加速。所以,请先阅读《Ubuntu-安装-cuda7.0-单显卡-超详细教程》,成功安装cuda之后,再来安装theano和caffe。

二、安装Theano

1. 安装各种包

  • 安装gfortran, numpy, scipy, sklearn, blas, atlas等包

    # 安装gfortran,后面编译过程中会用到
    sudo apt-get install gfortran
    # 安装blas,Ubuntu下对应的是libopenblas,其它操作系统可能需要安装其它版本的blas——这是个OS相关的。
    sudo apt-get install libopenblas-dev
    # 安装lapack,Ubuntu下对应的是liblapack-dev,和OS相关。
    sudo apt-get install liblapack-dev
    # 安装atlas,Ubuntu下对应的是libatlas-base-dev,和OS相关。
    sudo apt-get install libatlas-base-dev
    # 安装pip
    sudo apt-get install python-pip
    sudo apt-get install python-dev
    sudo apt-get install python-nose
    sudo apt-get install g++
    sudo apt-get install git 

     

2. 安装numpy和scipy

  • 安装这两个python库有点问题,如果使用apt-get安装,后面的test不能通过。如果使用pip安装,有得考虑各种依赖关系。

  • 所以,先使用apt-get安装,然后再卸载,最后再使用pip安装。这样,既能不考虑依赖关系,又能通过后面的test()测试。

    #安装numpy和scipy
    sudo apt-get install python-numpy
    sudo apt-get install python-scipy
    sudo apt-get install python-sklearn
    #卸载numpy和scipy
    sudo apt-get remove python-numpy
    sudo apt-get remove python-scipy
    # 安装numpy
    sudo pip install numpy
    # 测试numpy#,如果没有安装python-nose,测试会出错!python -c "
    import numpy
    numpy.test()
    # 安装s
    cipy
    sudo pip install scipy
    # 测试scipypython -c "
    import scipy
    scipy.test()"

     

3. 安装Theano

  • 前面的操作如果没有出现错误,就可以开始安装Theano了。命令如下所示。

    # 安装Theano
    sudo pip install Theano
    # 测试Theano
    import theano;
    theano.test()

     

4. 安装pyCUDA

  • 测试Theano时,提示PyCUDA import错误,因此需要安装pyCUDA。而PyCUDA需要以Boost为基础,所以应该先安装Boost。
  • 使用pip安装pyCUDA。

    #安装boost
    sudo apt-get install libboost-all-dev

     

  • 如果使用pip安装pyCUDA出错,使用下面安装方式。参考文章:《Ubuntu Theano CUDA》

    sudo ldconfig /usr/local/cuda-7.0/lib64

     

5. 解决cuda_ndarray.cu错误

  • 如果出现错误:ERROR (theano.sandbox.cuda): Failed to compile cuda_ndarray.cu: libcublas.so.6.5 cannot open shared object file: No such file or directory,需要运行以下命令:

    sudo ldconfig /usr/local/cuda-7.0/lib64

6. 配置Theano

  • 在主目录下新建.theanorc文件

    cd ~vi .theanorc
  • 在.theanorc中输入下面的内容

    [cuda]root=/usr/local/cuda/bin/[global]floatX = float32device = gpu0[nvcc]fastmath = True

7. 测试Theano是否在使用GPU

  • 将下列python代码复制到useGPU.py,并运行。

    from theano import function, config, shared, sandboximport theano.tensor as Timport numpyimport timevlen = 10 * 30 * 768  # 10 x #cores x # threads per coreiters = 1000rng = numpy.random.RandomState(22)x = shared(numpy.asarray(rng.rand(vlen), config.floatX))f = function([], T.exp(x))print f.maker.fgraph.toposort()t0 = time.time()for i in xrange(iters):    r = f()t1 = time.time()print 'Looping %d times took' % iters, t1 - t0, 'seconds'print 'Result is', rif numpy.any([isinstance(x.op, T.Elemwise) for x in f.maker.fgraph.toposort()]):    print 'Used the cpu'else:    print 'Used the gpu'
  • 假定上面已经设置文件.theanorc,运行命令如下所示:

    python useGPU.py
  • 如果出现下面的错误信息,请运行命令sudo ldconfig /usr/local/cuda-7.0/lib64参考 

    #错误信息ERROR (theano.sandbox.cuda): Failed to compile cuda_ndarray.cu: libcublas.so.7.0: cannot open shared object file: No such file or directory

Theano相关资料

  • 参考:Using the GPU & THEANO_FLAGS & THEANORC
  • CUDA Toolkit默认安装在/usr/local/cuda/,含有bin, lib, include等子文件夹。/usr/local/cuda/bin/文件夹称为cuda root文件夹。 
  • 使用Theano时,必须告诉它CUDA root文件夹,有3种方法:

    • 定义$CUDA_ROOT环境变量。例如, CUDA_ROOT=/usr/local/cuda/bin/
    • 在THEANO_FLAGS中添加cuda.root标识。例如,THEANO_FLAGS='cuda.root=/usr/local/cuda/bin/'
    • 在.theanorc文件夹中添加[cuda]

      [cuda]root=/usr/local/cuda/bin/
  • 还需要更改设备选项(gpu or gpu0 or gpu1),设置默认的浮点计算类型(float32)

    • 方法一:THEANO_FLAGS=’cuda.root=/usr/local/cuda/bin/,device=gpu,floatX=float32’
    • 方法二:设置.theanorc文件的[global]选项:

      [cuda]root=/usr/local/cuda/bin/[global]device = gpufloatX = float32
  • 注意: 
    • 如果电脑有多个GPU,而配置是‘device=gpu’,驱动会选择其中一个使用(一般是 gpu0)。可以使用 nvida-smi 改变这一规则。
    • 可以通过指定 ‘device=gpuX’来选择一个特定的GPU。
    • 默认使用GPU计算。如果GPU有问题,Theano会退回使用CPU。可以通过设置标识‘force_device=True’,当GPU不能使用时,弹出错误信息。

安装OpenCV

下载OpenCV

  • 下载地址:https://github.com/jayrambhia/Install-OpenCV,这是根据大神编译过的版本进行安装的。
  • 切换到文件保存的文件夹,然后安装依赖项:
#切换路径cd ~/Downloads/Install-OpenCV-master/Ubuntu#安装OpenCV的依赖项sudo ./dependencies.sh
  • 修改opencv2_4_9.sh
  • 如果不添加CUDA_GENERATION,编译过程会失败 参考文章
#切换路径cd 2.4#修改opencv2_4_9.sh, 添加CUDA_GENERATION#根据显卡支持Fermi或Kepler做相应的修改。此处以Fermi为例。sudo gedit opencv2_4_9.sh

将以下内容

cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local -D WITH_TBB=ON -D BUILD_NEW_PYTHON_SUPPORT=ON -D WITH_V4L=ON -D INSTALL_C_EXAMPLES=ON -D INSTALL_PYTHON_EXAMPLES=ON -D BUILD_EXAMPLES=ON -D WITH_QT=ON -D WITH_OPENGL=ON -D ..

修改为:

cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local -D WITH_TBB=ON -D BUILD_NEW_PYTHON_SUPPORT=ON -D WITH_V4L=ON -D INSTALL_C_EXAMPLES=ON -D INSTALL_PYTHON_EXAMPLES=ON -D BUILD_EXAMPLES=ON -D WITH_QT=ON -D WITH_OPENGL=ON -D CUDA_GENERATION=Fermi ..

即在最后的..前面添加CUDA_GENERATION=Fermi

  • 安装最新版opencv2_4_9
#添加执行权限sudo chmod +x opencv2_4_9.sh#安装OpenCVsudo ./opencv2_4_9.sh

等待…..,直到安装完成。如下图所示。 
这里写图片描述

安装其它依赖项

sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libboost-all-dev libhdf5-serial-dev libgflags-dev libgoogle-glog-dev liblmdb-dev protobuf-compiler protobuf-c-compiler python-pandas 

安装glog

  1. Google Logging Library(glog),下载地址:https://code.google.com/p/google-glog/,然后解压安装: 
    tarzxvfglog0.3.3.tar.gz ./ configure 
    make sudo make install

下载caffe

下载地址:https://github.com/BVLC/caffe 
本地解压 
切换路径cd ~/Downloads/caffe-master/python 
执行以下命令,安装python环境 
for req in (catrequirements.txt);dosudopipinstallreq; done

安装Matlab

选择Mathworks.Matlab.R2014a.Unix.iso - 右键 - 使用磁盘映像挂载器打开” 
进入装载的虚拟光盘,拷贝全部文件至home/Matlab 文件夹 
3. 授权安装文件夹 
$ chmod a+x Matlab -R 
4. 安装 
$ sudo ./install 
拷贝 libmwservices.so 至 /usr/local/MATLAB/R2014a/bin/glnxa64 
sudocplibmwservices.so/usr/local/MATLAB/R2014a/bin/glnxa64/sh /usr/local/MATLAB/R2014a/bin/matlab

参考文章

Ubuntu14.04安装Theano详细教程 

caffe官方安装教程

Caffe + Ubuntu 14.04 64bit + CUDA 6.5 配置说明

Caffe在Ubuntu 14.04 64bit 下的安装

Ubuntu Theano CUDA 

Unsupported gpu architecture ‘compute_11’解决方法

Caffe + Ubuntu 15.04 + CUDA 7.0 新手安装配置指南(推荐)

posted @ 2015-12-07 12:14  视觉书虫  阅读(2646)  评论(0编辑  收藏  举报