由Python的浅拷贝(shallow copy)和深拷贝(deep copy)引发的思考
首先查看拷贝模块(copy)发现:
>>> help(copy)
Help on module copy:
NAME
copy - Generic (shallow and deep) copying operations.
DESCRIPTION
Interface summary:
import copy
x = copy.copy(y) # make a shallow copy of y
x = copy.deepcopy(y) # make a deep copy of y
For module specific errors, copy.Error is raised.
The difference between shallow and deep copying is only relevant for compound objects (objects that contain other objects, like lists or
class instances).
- A shallow copy constructs a new compound object and then (to the extent possible) inserts *the same objects* into it that the
original contains.
- A deep copy constructs a new compound object and then, recursively, inserts *copies* into it of the objects found in the original.
...(here omitted 10000words)
由以上的信息可知:
1、相同点:都拷贝出了一个新的复合对象;
2、不同点:浅拷贝—— 在拷贝出的新的对象上插入(引用)源list对象的一切;
深拷贝—— 递归地拷贝源list对象中的一切。(彻头彻尾的另立门户)
现在出现了一个新的问题—— 拷贝
在计算机中拷贝一份数据或者拷贝一个变量,意味着系统需分配新的内存用于对拷贝数据的存放。
我们先来讨论一下变量的赋值(变量的数据结构中的内存地址域的拷贝)过程。
首先看一下变量的赋值过程:
1 Python 2.6.6 (r266:84292, Aug 18 2016, 15:13:37) 2 [GCC 4.4.7 20120313 (Red Hat 4.4.7-17)] on linux2 3 Type "help", "copyright", "credits" or "license" for more information. 4 >>> a = 3 5 >>> b = a 6 >>> id(a) 7 7488264 8 >>> id(b) 9 7488264 10 >>> a = 4 11 >>> id(a) 12 7488240 13 >>> id(b) # 咦,b没有随a发生改变 14 7488264 15 >>> b
3
要解释这个,必须要了解变量的数据结构。
当向系统申请创建一个变量时,系统先分配一块内存空间,该内存空间用于存储该变量。
变量的数据结构包括2部分:第一部分用于存储变量的名称和变量的数据类型的长度,第二部分用于存储内存地址(即索引)。
当变量未初始化时,第二部分数据为垃圾值;一旦初始化,该部分的值即为初始化值的内存地址。
例如:以上 a = 3, 其过程如下:
首先系统为常量3(int型)分配一块内存大小为4byte的空间存放常量3;然后将常量3的内存地址存储于变量a的第二部分。这样就完成了变量a的赋值过程。
b = a时,同样系统先分配一块内存空间存放变量b, 之后系统将a中的第二部分数据拷贝到b中的第二部分。
而id()的返回值正是变量的第二部分数据(内存地址)。
所以当执行a时,是根据第二部分的数据(内存地址)获取该内存的值。
当a = 4 时,变量a第二部分的数据即为常量4的存储地址,因此id(a)发生改变,而id(b)保持不变。
如下图:
回到浅拷贝和深拷贝的议题:
浅拷贝—— 在拷贝出的新的对象上插入(引用)源list对象的一切;
深拷贝—— 递归地拷贝源list对象中的一切。(彻头彻尾的另立门户)。
浅拷贝的实例:
1 #!/usr/bin/python # Python2 2 # 3 import copy 4 5 will = ["Will", 28, ["Python", "C#", "JavaScript"]] 6 wilber = copy.copy(will) 7 8 print id(will) # 140337318319672 9 print will # ['Will', 28, ['Python', 'C#', 'JavaScript']] 10 print [id(ele) for ele in will] # [140337318374208, 13394096, 140337318282160] 11 print '============================' 12 print id(will[2]) # 140337318282160 13 print id(will[2][0]) # 140337318677600 14 print id(wilber[2][0]) # 140337318677600 15 print id(wilber) # 140337318386216 16 print wilber # ['Will', 28, ['Python', 'C#', 'JavaScript']] 17 print [id(ele) for ele in wilber] # [140337318374208, 13394096, 140337318282160] 18 19 will[0] = "Wilber" 20 will[2].append("CSS") 21 print id(will) # 140337318319672 22 print will # ['Wilber', 28, ['Python', 'C#', 'JavaScript', 'CSS']] 23 print [id(ele) for ele in will] # [140337318374448, 13394096, 140337318282160] 24 print id(wilber) # 140337318386216 25 print wilber # ['Will', 28, ['Python', 'C#', 'JavaScript', 'CSS']] 26 print [id(ele) for ele in wilber] # [140337318374208, 13394096, 140337318282160]
浅拷贝只是生成一个新的对象,数据结构以及索引关系未变。
浅拷贝时,列表will与wilber由系统分配不同的地址,系统将列表will的第一层进行拷贝即:will[0], will[1], will[2]拷贝,故wilber[0]与will[0],wilber[1]与will[1],wilber[2]与will[2],指向相同的内存地址。
如下图所示:
深拷贝实例:
1 #!/usr/bin/python 2 # 3 import copy 4 5 will = ["Will", 28, ["Python", "C#", "JavaScript"]] 6 wilber = copy.deepcopy(will) 7 8 print id(will) # 139899797283040 9 print will # ['Will', 28, ['Python', 'C#', 'JavaScript']] 10 print [id(ele) for ele in will] # [139899797338992, 11432112, 139899797246896] 11 print '=============' 12 print id(will[2]) # 139899797246896 13 print id(wilber[2]) # 139899797351024 14 print id(will[2][0]) # 139899797642336 15 print id(wilber[2][0]) # 139899797642336 16 print id(wilber[2][1]) # 139899797339088 17 print id(wilber) # 139899797349296 18 print wilber # ['Will', 28, ['Python', 'C#', 'JavaScript']] 19 print [id(ele) for ele in wilber] # [139899797338992, 11432112, 139899797351024] 20 21 will[0] = "Wilber" 22 will[2].append("CSS") 23 print id(will) # 139899797283040 24 print will # ['Wilber', 28, ['Python', 'C#', 'JavaScript', 'CSS']] 25 print [id(ele) for ele in will] # [139899797339280, 11432112, 139899797246896] 26 print id(wilber) # 139899797349296 27 print wilber # ['Will', 28, ['Python', 'C#', 'JavaScript']] 28 print [id(ele) for ele in wilber] # [139899797338992, 11432112, 139899797351024]
深拷贝会递归(逐层)拷贝list的数据结构。
深拷贝时,系统将列表will逐层进行拷贝即:列表will与wilbe,will[2]与wilber[2]由系统分配不同的地址,will[0], will[1], will[2],will[2][0], will[2][1], will[2][2]拷贝;
故wilber[0]与will[0],wilber[1]与will[1], will[2][0]与wilber[2][0], will[2][1]与wilber[2][0], will[2][2]与wilber[2][2],指向相同的内存地址。
附注-list之间的赋值代码:
1 #!/usr/bin/python 2 # 3 will = ["Will", 28, ["Python", "C#", "JavaScript"]] 4 wilber = will 5 print id(will) 6 print will 7 print [id(ele) for ele in will] 8 print id(wilber) 9 print wilber 10 print [id(ele) for ele in wilber] 11 12 will[0] = "Wilber" 13 will[2].append("CSS") 14 print id(will) 15 print will 16 print [id(ele) for ele in will] # 发现操作的是同一对象 17 print id(wilber) 18 print wilber 19 print [id(ele) for ele in wilber]