Android Low Memory Killer
Low Memory Killer的原理
在Android中,即使当用户退出应用程序之后,应用程序的进程也还是存在于系统中,这样是为了方便程序的再次启动,但是这样的话,随着打开的程序数量的增加,系统的内存会变得不足,就需要杀掉一部分进程以释放内存空间。至于是否需要杀死一些进程和哪些进程需要被杀死,是通过Low Memory Killer机制来进行判定的。
Android的Low Memory Killer基于Linux的OOM机制,在Linux中,内存是以页面为单位分配的,当申请页面分配时如果内存不足会通过以下流程选择bad进程来杀掉从而释放内存:
alloc_pages -> out_of_memory() -> select_bad_process() -> badness()
在Low Memory Killer中通过进程的oom_adj与占用内存的大小决定要杀死的进程,oom_adj越小越不容易被杀死。
Low Memory Killer Driver在用户空间指定了一组内存临界值及与之一一对应的一组oom_adj值,当系统剩余内存位于内存临界值中的一个范围内时,如果一个进程的oom_adj值大于或等于这个临界值对应的oom_adj值就会被杀掉。
可以通过修改/sys/module/lowmemorykiller/parameters/minfree与/sys/module/lowmemorykiller/parameters/adj来改变内存临界值及与之对应的oom_adj值。minfree中数值的单位是内存中的页面数量,一般情况下一个页面是4KB。
比如如果向/sys/module/lowmemorykiller/parameters/adj写入0,8,向/sys/module/lowmemorykiller/parameters/minfree中写入1024,4096,假设一个页面大小为4KB,这样当系统空闲内存位于1024*4~4096*4KB之间时oom_adj大于等于8的进程就会被杀掉。
在lowmemorykiller.c中定义了阈值表的默认值,可以通过init.rc自定义:
static int lowmem_adj[6] = { 0, 1, 6, 12, }; static int lowmem_adj_size = 4; static size_t lowmem_minfree[6] = { 3 * 512, /* 6MB */ 2 * 1024, /* 8MB */ 4 * 1024, /* 16MB */ 16 * 1024, /* 64MB */ };
static int lowmem_minfree_size = 4;
在init.rc中定义了init进程的oom_adj为-16,不可能会被杀死(init的PID是1):
on early-init # Set init and its forked children's oom_adj. write /proc/1/oom_adj -16
在Linux中有一个kswapd的内核线程,当linux回收内存分页的时候,kswapd线程将会遍历一张shrinker链表,并执行回调,定义如下:
/* * A callback you can register to apply pressure to ageable caches. * * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should * look through the least-recently-used 'nr_to_scan' entries and * attempt to free them up. It should return the number of objects * which remain in the cache. If it returns -1, it means it cannot do * any scanning at this time (eg. there is a risk of deadlock). * * The 'gfpmask' refers to the allocation we are currently trying to * fulfil. * * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is * querying the cache size, so a fastpath for that case is appropriate. */
struct shrinker { int (*shrink)(int nr_to_scan, gfp_t gfp_mask); int seeks; /* seeks to recreate an obj */ /* These are for internal use */ struct list_head list; long nr; /* objs pending delete */ }; #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */ extern void register_shrinker(struct shrinker *); extern void unregister_shrinker(struct shrinker *);
通过register_shrinker与unregister_shrinker向shrinker链表中添加或移除回调。当注册Shrinker后就可以在回收内存分页时按自己定义的规则释放内存。
Android Low Memory Killer的代码在drivers/staging/android/lowmemorykiller.c中,通过以下代码在模块初始化时注册Shrinker:
static int lowmem_shrink(int nr_to_scan, gfp_t gfp_mask); static struct shrinker lowmem_shrinker = { .shrink = lowmem_shrink, .seeks = DEFAULT_SEEKS * 16 }; static int __init lowmem_init(void) { register_shrinker(&lowmem_shrinker); return 0; } static void __exit lowmem_exit(void) { unregister_shrinker(&lowmem_shrinker); } module_init(lowmem_init); module_exit(lowmem_exit);
这样就可以在回收内存分页时调用lowmem_shrink函数。
Low Memory Killer的实现
lowmem_shrink的定义如下:
static int lowmem_shrink(int nr_to_scan, gfp_t gfp_mask) { struct task_struct *p; struct task_struct *selected = NULL; int rem = 0; int tasksize; int i; int min_adj = OOM_ADJUST_MAX + 1; int selected_tasksize = 0; int selected_oom_adj; int array_size = ARRAY_SIZE(lowmem_adj); int other_free = global_page_state(NR_FREE_PAGES); int other_file = global_page_state(NR_FILE_PAGES); if (lowmem_adj_size < array_size) array_size = lowmem_adj_size; if (lowmem_minfree_size < array_size) array_size = lowmem_minfree_size; for (i = 0; i < array_size; i++) { if (other_free < lowmem_minfree[i] && other_file < lowmem_minfree[i]) { min_adj = lowmem_adj[i]; break; } } if (nr_to_scan > 0) lowmem_print(3, "lowmem_shrink %d, %x, ofree %d %d, ma %d\n", nr_to_scan, gfp_mask, other_free, other_file, min_adj); rem = global_page_state(NR_ACTIVE_ANON) + global_page_state(NR_ACTIVE_FILE) + global_page_state(NR_INACTIVE_ANON) + global_page_state(NR_INACTIVE_FILE); if (nr_to_scan <= 0 || min_adj == OOM_ADJUST_MAX + 1) { lowmem_print(5, "lowmem_shrink %d, %x, return %d\n", nr_to_scan, gfp_mask, rem); return rem; } selected_oom_adj = min_adj; read_lock(&tasklist_lock); for_each_process(p) { struct mm_struct *mm; int oom_adj; task_lock(p); mm = p->mm; if (!mm) { task_unlock(p); continue; } oom_adj = mm->oom_adj; if (oom_adj < min_adj) { task_unlock(p); continue; } tasksize = get_mm_rss(mm); task_unlock(p); if (tasksize <= 0) continue; if (selected) { if (oom_adj < selected_oom_adj) continue; if (oom_adj == selected_oom_adj && tasksize <= selected_tasksize) continue; } selected = p; selected_tasksize = tasksize; selected_oom_adj = oom_adj; lowmem_print(2, "select %d (%s), adj %d, size %d, to kill\n", p->pid, p->comm, oom_adj, tasksize); } if (selected) { lowmem_print(1, "send sigkill to %d (%s), adj %d, size %d\n", selected->pid, selected->comm, selected_oom_adj, selected_tasksize); force_sig(SIGKILL, selected); rem -= selected_tasksize; } lowmem_print(4, "lowmem_shrink %d, %x, return %d\n", nr_to_scan, gfp_mask, rem); read_unlock(&tasklist_lock); return rem; }
分开来看这段代码,首先取得内存阈值表的大小,取阈值表数组大小与lowmem_adj_size,lowmem_minfree_size的较小值,然后通过globa_page_state获得当前剩余内存的大小,然后跟内存阈值表中的阈值相比较获得min_adj与selected_oom_adj:
int array_size = ARRAY_SIZE(lowmem_adj); int other_free = global_page_state(NR_FREE_PAGES); int other_file = global_page_state(NR_FILE_PAGES); if (lowmem_adj_size < array_size) array_size = lowmem_adj_size; if (lowmem_minfree_size < array_size) array_size = lowmem_minfree_size; for (i = 0; i < array_size; i++) { if (other_free < lowmem_minfree[i] && other_file < lowmem_minfree[i]) { min_adj = lowmem_adj[i]; break; } }
selected_oom_adj = min_adj;
遍历所有进程找到oom_adj>min_adj并且占用内存大的进程:
read_lock(&tasklist_lock); for_each_process(p) { struct mm_struct *mm; int oom_adj; task_lock(p); mm = p->mm; if (!mm) { task_unlock(p); continue; } oom_adj = mm->oom_adj; //获取task_struct->struct_mm->oom_adj,如果小于警戒值min_adj不做处理 if (oom_adj < min_adj) { task_unlock(p); continue; } //如果走到这里说明oom_adj>=min_adj,即超过警戒值 //获取内存占用大小,若<=0,不做处理 tasksize = get_mm_rss(mm); task_unlock(p); if (tasksize <= 0) continue; //如果之前已经先择了一个进程,比较当前进程与之前选择的进程的oom_adj与内存占用大小,如果oom_adj比之前选择的小或相等而内存占用比之前选择的进程小,不做处理。 if (selected) { if (oom_adj < selected_oom_adj) continue; if (oom_adj == selected_oom_adj && tasksize <= selected_tasksize) continue; } //走到这里表示当前进程比之前选择的进程oom_adj大或相等但占用内存大,选择当前进程 selected = p; selected_tasksize = tasksize; selected_oom_adj = oom_adj; lowmem_print(2, "select %d (%s), adj %d, size %d, to kill\n", p->pid, p->comm, oom_adj, tasksize); }
如果选择出了符合条件的进程,发送SIGNAL信号Kill掉:
if (selected) { lowmem_print(1, "send sigkill to %d (%s), adj %d, size %d\n", selected->pid, selected->comm, selected_oom_adj, selected_tasksize); force_sig(SIGKILL, selected); rem -= selected_tasksize; }
oom_adj与上层Process Importance的关系
我们知道,在上层进程按重要性可以分为:Foreground process,Visible process,Service process,Background process与Empty process,那么这些重要性怎么与Low Memory Killer中的oom_adj对应起来的呢?
在ActivityManager.RunningAppProcessInfo中我们可以看到如下关于importance的定义:
/** * Constant for {@link #importance}: this is a persistent process. * Only used when reporting to process observers. * @hide */ public static final int IMPORTANCE_PERSISTENT = 50; /** * Constant for {@link #importance}: this process is running the * foreground UI. */ public static final int IMPORTANCE_FOREGROUND = 100; /** * Constant for {@link #importance}: this process is running something * that is actively visible to the user, though not in the immediate * foreground. */ public static final int IMPORTANCE_VISIBLE = 200; /** * Constant for {@link #importance}: this process is running something * that is considered to be actively perceptible to the user. An * example would be an application performing background music playback. */ public static final int IMPORTANCE_PERCEPTIBLE = 130; /** * Constant for {@link #importance}: this process is running an * application that can not save its state, and thus can't be killed * while in the background. * @hide */ public static final int IMPORTANCE_CANT_SAVE_STATE = 170; /** * Constant for {@link #importance}: this process is contains services * that should remain running. */ public static final int IMPORTANCE_SERVICE = 300; /** * Constant for {@link #importance}: this process process contains * background code that is expendable. */ public static final int IMPORTANCE_BACKGROUND = 400; /** * Constant for {@link #importance}: this process is empty of any * actively running code. */ public static final int IMPORTANCE_EMPTY = 500;
这些常量表示了Process的Importance等级,而在ProcessList中我们会发现关于adj的一些定义:
// This is a process only hosting activities that are not visible, // so it can be killed without any disruption. static final int HIDDEN_APP_MAX_ADJ = 15; static int HIDDEN_APP_MIN_ADJ = 9; // The B list of SERVICE_ADJ -- these are the old and decrepit // services that aren't as shiny and interesting as the ones in the A list. static final int SERVICE_B_ADJ = 8; // This is the process of the previous application that the user was in. // This process is kept above other things, because it is very common to // switch back to the previous app. This is important both for recent // task switch (toggling between the two top recent apps) as well as normal // UI flow such as clicking on a URI in the e-mail app to view in the browser, // and then pressing back to return to e-mail. static final int PREVIOUS_APP_ADJ = 7; // This is a process holding the home application -- we want to try // avoiding killing it, even if it would normally be in the background, // because the user interacts with it so much. static final int HOME_APP_ADJ = 6; // This is a process holding an application service -- killing it will not // have much of an impact as far as the user is concerned. static final int SERVICE_ADJ = 5; // This is a process currently hosting a backup operation. Killing it // is not entirely fatal but is generally a bad idea. static final int BACKUP_APP_ADJ = 4; // This is a process with a heavy-weight application. It is in the // background, but we want to try to avoid killing it. Value set in // system/rootdir/init.rc on startup. static final int HEAVY_WEIGHT_APP_ADJ = 3; // This is a process only hosting components that are perceptible to the // user, and we really want to avoid killing them, but they are not // immediately visible. An example is background music playback. static final int PERCEPTIBLE_APP_ADJ = 2; // This is a process only hosting activities that are visible to the // user, so we'd prefer they don't disappear. static final int VISIBLE_APP_ADJ = 1; // This is the process running the current foreground app. We'd really // rather not kill it! static final int FOREGROUND_APP_ADJ = 0; // This is a system persistent process, such as telephony. Definitely // don't want to kill it, but doing so is not completely fatal. static final int PERSISTENT_PROC_ADJ = -12; // The system process runs at the default adjustment. static final int SYSTEM_ADJ = -16;
我们可以看到:
static final int PREVIOUS_APP_ADJ = 7; static final int HOME_APP_ADJ = 6;
并不是所有的Background process的等级都是相同的。
关于ADJ与Importance的值都找到了,那么它们是怎么对应起来的呢?Activity实际是由ActivityManagerService来管理的,在ActivityManagerService中我们可以找到以下函数:
static int oomAdjToImportance(int adj, ActivityManager.RunningAppProcessInfo currApp) { if (adj >= ProcessList.HIDDEN_APP_MIN_ADJ) { if (currApp != null) { currApp.lru = adj - ProcessList.HIDDEN_APP_MIN_ADJ + 1; } return ActivityManager.RunningAppProcessInfo.IMPORTANCE_BACKGROUND; } else if (adj >= ProcessList.SERVICE_B_ADJ) { return ActivityManager.RunningAppProcessInfo.IMPORTANCE_SERVICE; } else if (adj >= ProcessList.HOME_APP_ADJ) { if (currApp != null) { currApp.lru = 0; } return ActivityManager.RunningAppProcessInfo.IMPORTANCE_BACKGROUND; } else if (adj >= ProcessList.SERVICE_ADJ) { return ActivityManager.RunningAppProcessInfo.IMPORTANCE_SERVICE; } else if (adj >= ProcessList.HEAVY_WEIGHT_APP_ADJ) { return ActivityManager.RunningAppProcessInfo.IMPORTANCE_CANT_SAVE_STATE; } else if (adj >= ProcessList.PERCEPTIBLE_APP_ADJ) { return ActivityManager.RunningAppProcessInfo.IMPORTANCE_PERCEPTIBLE; } else if (adj >= ProcessList.VISIBLE_APP_ADJ) { return ActivityManager.RunningAppProcessInfo.IMPORTANCE_VISIBLE; } else { return ActivityManager.RunningAppProcessInfo.IMPORTANCE_FOREGROUND; } }
在这个函数中实现了根据adj设置importance的功能。
我们还可以看到SERVICE还分为SERVICE_B_ADJ与SERVICE_ADJ,等级是不一样的,并不是所有Service的优先级都比Background process的优先级高。当调用Service的startForeground后,Service的importance就变为了IMPORTANCE_PERCEPTIBLE(在记忆中曾经将Service设置为foreground并打印出其importance的值与IMPORTANCE_PERCEPTIBLE相等),对应的adj是PERCEPTIBLE_APP_ADJ,即2,已经很难被系统杀死了。
// This is a system persistent process, such as telephony. Definitely // don't want to kill it, but doing so is not completely fatal. static final int PERSISTENT_PROC_ADJ = -12; // The system process runs at the default adjustment. static final int SYSTEM_ADJ = -16;
像电话等进程的adj为-12已基本不可能被杀死了,而在前面已经看到了,init.rc中将init进程的oom_adj设置为了-16,已经是永生进程了。
相关链接: